Инд. авторы: Cai K.., Xiao W.., Sun M.., Chen M.., Buslov M.M., Rubanova E.S., Kulikova A.V., Voytishek E.E., Jahn B.m., Long X.., Chen H.., Wan B..
Заглавие: Crustal nature and origin of the russian altai: implications for the continental evolution and growth of the central asian orogenic belt (caob)
Библ. ссылка: Cai K., Xiao W., Sun M., Chen M., Buslov M.M., Rubanova E.S., Kulikova A.V., Voytishek E.E., Jahn B.m., Long X., Chen H., Wan B. Crustal nature and origin of the russian altai: implications for the continental evolution and growth of the central asian orogenic belt (caob) // Tectonophysics. - 2016. - Vol.674. - P.182-194. - ISSN 0040-1951.
Внешние системы: DOI: 10.1016/j.tecto.2016.02.026; РИНЦ: 27045948; SCOPUS: 2-s2.0-84960194210; WoS: 000374624200013;
Реферат: eng: The Central Asian Orogenic Belt is a gigantic tectonic collage of numerous accreted terranes. However, its geodynamic evolution has been hotly debated primarily due to incomplete knowledge on the nature of these enigmatic terranes. This work presents new detrital zircon U-Pb and Hf isotopic data to constrain the crustal nature and origin of the Russian Altai, a critical segment of Altai-Mongolian terrane. The youngest zircon 206Pb/238U ages of 470 Ma constrain that the Terekta Formation, previously envisaged as Precambrian basement, was actually deposited after the Middle Ordovician. As for the three more sedimentary sequences above the Terekta Formation, they have youngest zircon 206Pb/238U ages of 425 Ma, 440 Ma and 380 Ma, respectively, indicating their depositions likely in the Late Silurian to Devonian. From all analyses, it is noted that many zircon U-Pb ages cluster at ca. 520 Ma and ca. 800 Ma, and these zircons display oscillatory zoning and have subhedral to euhedral morphology, which, collectively, suggests that adjacent Neoproterozoic to Paleozoic igneous rocks were possibly dominant in the sedimentary provenance. Additionally, a few rounded Archean to Mesoproterozoic zircon grains are characterized by complex texture, which are interpreted as recycling materials probably derived from the Tuva-Mongolian microcontinent. Precambrian rocks have not been identified in the Russian Altai, Chinese Altai and Mongolian Altai so far, therefore, Precambrian basement may not exist in the Altai-Mongolian terrane, but this terrane probably represents a large subduction-accretion complex built on the margin of the Tuva-Mongolian microcontinent in the Early Paleozoic. Multiple episodes of ridge-trench interaction may have caused inputs of mantle-derived magmas to trigger partial melting of the newly accreted crustal materials, which contributed to the accretionary complex. During accretionary orogenesis of the CAOB, formation of such subduction-accretion complex is likely ubiquitous, indicating continental crust growth by both lateral accumulation and vertical basaltic injection.
Ключевые слова: Continent crustal growth; Central Asian Orogenic Belt; Altai-Mongolian terrane; Accretionary orogenesis; subduction-accretion complex;
Издано: 2016
Физ. характеристика: с.182-194
Цитирование: 1. Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192:59-79. 2. Badarch G., Cunningham W.D., Windley B.F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J. Asian Earth Sci. 2002, 21:87-110. 3. Bernard Edel J., Schulmanna K., Hanžl P., Lexad O. Palaeomagnetic and structural constraints on 90° anticlockwise rotation in SW Mongolia during the Permo-Triassic: Implications for Altaid oroclinal bending. Preliminary palaeomagnetic results. J. Asian Earth Sci. 2014, 94:157-171. 4. BGMRX (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region) Regional geology of Xinjiang Uygur Autonomous Region. People's Republic of China, Ministry of Geology and Mineral Resources. Geological Memoirs, Series 1 1993, No. 32. Geological Publishing House, Beijing, (206 pp., in Chinese). 5. Black L.P., Kamo S.L., Williams I.S., Mundil R., Davis D.W., Korsch R.J., Foudoulis C. The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chem. Geol. 2003, 200:171-188. 6. Blichert-Toft J., Albarede F. The Lu-Hf geochemistry of the chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148:243-258. 7. Buslov M.M. Tectonics and geodynamics of the Central Asian foldbelt: the role of late-Palaeozoic large-amplitude displacements. Russ. Geol. Geophys. 2011, 52:66-90. 8. Buslov M.M., Fujiwara Y., Iwata K., Semakov N.N. Late Paleozoic-Early Mesozoic geodynamics of Central Asia. Gondwana Res. 2004, 7:791-808. 9. Buslov M.M., Geng H., Travin A.V., Otgonbaatar D., Kulikova A.V., Chen M., Stijn G., Semakov N.N., Rubanova E.S., Abildaeva M.A., Voitishek E.E., Trofimova D.A. Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-Sayan folded area. Russ. Geol. Geophys. 2013, 54:1250-1271. 10. Buslov M.M., Safonova I.Y., Watanabe t., Obut O.T., Fujiwara Y., Iwata K., Semakov N.N., Sugai Y., L.V.Smirnova, Kazansky A.Y. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geoscience J. 2001, 5:203-224. 11. Buslov M.M., Watanabe T., Fujiwara Y., Iwata K., Smirnova L.V., Safonova I.Y., Semakov N.N., Kiryanova A.P. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. J. Asian Earth Sci. 2004, 23:655-671. 12. Cai K.D., Sun M., Xiao W.J., Buslov M.M., Yuan C., Zhao G.C., Long X.P. Zircon U-Pb geochronology and Hf isotopic composition of Paleozoic granitoids in Russian Altai mountain, Central Asian Orogenic Belt. Am. J. Sci. 2014, 314:580-612. 13. Cai K.D., Sun M., Yuan C., Long X.P., Xiao W.J. Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: a review. Russ. Geol. Geophys. 2011, 52:1585-1599. 14. Cai K.D., Sun M., Yuan C., Zhao G.C., Xiao W.J., Long X.P. Keketuohai mafic-ultramafic complex from the Chinese Altai, NW China: petrogenesis and geodynamic significance. Chem. Geol. 2012, 294-295:26-41. 15. Cai K.D., Sun M., Yuan C., Zhao G.C., Xiao W.J., Long X.P., Wu F.Y. Geochronological and geochemical study of mafic dykes from the Northwest Chinese Altai: Implications for petrogenesis and tectonic evolution. Gondwana Res. 2010, 18:638-652. 16. Cai K.D., Sun M., Yuan C., Zhao G.C., Xiao W.J., Long X.P., Wu F.Y. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. J. Asian Earth Sci. 2011, 42:949-968. 17. Cai K.D., Sun M., Yuan C., Zhao G.C., Xiao W.J., Long X.P., Wu F.Y. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai. NW China: Lithos 2011, 127:261-281. 18. Cai K.D., Sun M., Yuan C., Zhao G.C., Xiao W.J., Long X.P., Wu F.Y. Carboniferous mantle-derived felsic intrusion in the Chinese Altai. NW China: Implications for Geodynamic Change of the Accretionary Orogenic Belt: Gondwana Research 2012, 22:681-698. 19. Cawood P.A., Hawkesworth C.J., Dhuime B. Detrital zircon record and tectonic setting. Geology 2012, 40:875-878. 20. Cawood P.A., Kröner A., Collins W.J., Kusky T.M., Mooney W.D., Windley B.F. Accretionary orogens through Earth history. Geol. Soc. Lond. Spec. Publ. 2009, 318:1-36. 21. Chen M., Sun M., Cai K.D., Buslov M.M., Zhao G.C., Rubanova E.S. Geochemical study of the Cambrian-Ordovician meta-sedimentary rocks from the northern Altai-Mongolian terrane, northwestern Central Asian Orogenic Belt: Implications on the provenance and tectonic setting. J. Asian Earth Sci. 2014, 96:69-83. 22. Chen M., Sun M., Cai K.D., Buslov M.M., Zhao G.C., Rubanova E.S., Voytishek E.E. Detrital zircon record of the early Paleozoic meta-sedimentary rocks in Russian Altai: Implications on their provenance and the tectonic nature of the Altai-ongolian terrane. Lithos 2015, 209-222. 23. Condie K.C. Accretionary orogens in space and time. Geological Society of America, Memoir 2007, 200:145-158. 24. Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53:469-500. 25. Daukeev S.Z., Kim B.C., Li T., Petrov O.V., Tomurtogoo O. Atlas of Geological Maps of Central Asia and Adjacent Areas 2008, Geological Publishing House. 26. De Grave J., Glorie S., Zhimulev F.I., Buslov M.M., Elburg M., Vanhaecke F., Van den haute P. Emplacement and exhumation of the Kuznetsk-Alatau basement (Siberia): implications for the tectonic evolution of the Central Asian Orogenic Belt and sediment supply to the Kuznetsk, Minusa and West Siberian Basins. Terra Nova 2011, 23:248-256. 27. Demoux A., Kröner A., Badarch G., Ping J., Tomurhuu D., Wingate M.T.D. Zircon ages from the Baydrag Block and the Bayankhongor ophiolite zone: time constraints on Late Neoproterozoic to Cambrian subduction- and accretion-related magmatism in Central Mongolia. J. Geol. 2009, 117:377-397. 28. Dergunov A.B., Luvsandanzan B., Pavlenko V.S. Geology of West Mongolia, Nauka, Moscow 1980, (145 pp., in Russian). 29. Dhuime B., Hawkesworth C., Cawwood P. When continents formed. Science 2011, 331:154-155. 30. Dickinson W.R., Snyder W.S. Geometry of subducted slabs related to San Andreas transform. J. Geol. 1979, 87:609-627. 31. Dobretsov N.L., Buslov M.M. Late Cambrian-Ordovician tectonics and geodynamics of the Central Asia. Russ. Geol. Geophys. 2007, 48:1-12. 32. Dobretsov N.L., Buslov M.M., Vernikovsky V.A. Neoproterozoic to Early Ordovician evolution of the paleo-Asian ocean: implications to the break-up of Rodinia. Gondwana Res. 2003, 6:143-159. 33. Fedo C.M., Sircombe K.N., Rainbird R.H. Detrital zircon analysis of the sedimentary record. Rev. Mineral. Geochem. 2003, 53:277-303. 34. Gao J.F., Zhou M.F. Magma mixing in the genesis of the Kalatongke dioritic intrusion: implications for the tectonic switch from subduction to post-collision, Chinese Altay, NW China. Lithos 2013, 162-163:236-250. 35. Glorie S., De Grave J., Buslov M.M., Zhimulev F.I., Izmer A., Vandoorne W., Ryabinin A., Van den haute P., Vanhaecke F., Elburg, M.A Formation and palaeozoic evolution of the Gorny-Altai-Altai-Mongolia suture zone (South Siberia): zircon U/Pb constraints on the igneous record. Gondwana Res. 2011, 20:465-484. 36. Glorie S., De Grave J., Buslov M.M., Zhimulev F.I., Safonova I.Y. Detrital zircon provenance of early Palaeozoic sediments at the southwestern margin of the Siberian Craton: insights from U-Pb geochronology. J. Asian Earth Sci. 2014, 82:115-123. 37. Griffin W.L., Pearson N.J., Belousova E., Jackson S.E., van Achterbergh E., O'Reilly S.Y., Shee S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64:133-147. 38. Han B.F., Ji J.Q., Song B., Chen L.H., Li Z. SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chin. Sci. Bull. 2004, 49:2424-2429. 39. Han G.Q., Liu Y.J., Neubauer F., Genser J., Li W., Zhao Y.L., Liang C.Y. Origin of terranes in the Eastern Central Asian Orogenic Belt, NE China: U-Pb ages of detrital zircons from Ordovician-Devonian sandstones, North Da Xing'an Mts. Tectonophysics 2011, 511:109-124. 40. Hanchar J.M., Rundnick R.L. Revealing hidden structures: The application of athodoluminescene and back-scattered electron imaging to dating zircons from lower crustal xenoliths. Lithos 1995, 36:289-303. 41. He G.Q., Han B.F., Yue Y.J., Wang J.H. Tectonic division and crustal evolution of Altay orogenic belt in China. Geoscience of Xinjiang 1990, 2:9-20. (in Chinese with English abstract). 42. Hu A.Q., Jahn B.M., Zhang G., Chen Y., Zhang Q. Crustal evolution and Phanerozoic crustal growth in Northern Xinjiang: Nd isotope evidence. 1. Isotopic characterization of basement rocks. Tectonophysics 2000, 328:15-51. 43. Jahn B.M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Aspects of the Tectonic Evolution of China, 226 2004, 73-100. Special Publications, London. J. Malpas, C.J.N. Fletcher, J.R. Ali, J.C. Aitchison (Eds.). 44. Jahn B.M., Wu F., Chen B. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic. Transaction of Royal Society of Edinburgh Earth Science 2000, 91:181-193. 45. Jahn B.M., Wu F.Y., Chen B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23:82-92. 46. Jian P., Kröner A., Jahn B.-m, Windley B.F., Shi Y., Zhang W., Zhang F., Miao L., Tomurhuu D., Liu D. Zircon dating of Neoproterozoic and Cambrian ophiolites in West Mongolia and implications for the timing of orogenic processes in the central part of the Central Asian Orogenic Belt. Earth Sci. Rev. 2014, 133:62-93. 47. Jiang Y.D., Sun M., Kröner A., Tumurkhuu D., Long X.P., Zhao G.C., Yuan C., Xiao W.J. The high-grade Tseel Terrane in SW Mongolia: An Early Paleozoic arc system or a Precambrian sliver?. Lithos 2012, 142-143:95-115. 48. Jiang Y.D., Sun M., Zhao G.C., Yuan C., Xiao W.J., Xia X.P., Long X.P., Wu F.Y. The 390 Ma high-T metamorphic event in the Chinese Altai: a consequence of ridge-subduction?. American Journal of Sciences 2010, 310:1421-1452. 49. Jiang Y.D., Sun M., Zhao G.C., Yuan C., Xiao W.J., Xia X.P., Long X.P., Wu F.Y. Precambrian detrital zircons in the Early Paleozoic Chinese Altai: their provenance and implications for the crustal growth of Central Asia. Precambrian Res. 2011, 189:140-154. 50. Khain E.V., Bibokova E.V., Kroner A., Zhuravlev D.Z., Sklyarov E.V., Fedotova A.A., Kravchenko-Berezhnoy I.R. The most ancient ophiolites of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet. Sci. Lett. 2002, 199:311-325. 51. Kotov A.B., Kovach V.P., Salnikova E.B., Glebovitsky V.A., Yakovleva S.Z., Berezhnaya N.G., Myskova T.A. Continental crust age and evolution in the Central Aldan granulite-gneiss terrain: U-Pb and Sm-Nd data on granitoids. Petrology 1995, 1:97-108. 52. Early Precambrian of the Central-Asian Mobile Belt 1993, 180. Nauka, Leningrad, (in Russian). I.K. Kozakov (Ed.). 53. Kozakov I.K., Kotov A.B., Salnikova E.B., Kovach V.P., Natman A., Bibikova E.V., Kirnozova T.I., Todt W., Kröner A., Yakovleva S.Z., Lebedev V.I., Sugorakova A.M. Timing of the structural evolution of metamorphic rocks in the Tuva-Mongolian Massif. Geotectonics 2001, 35:165-184. 54. Kravchinsky V.A., Sklyarov E.V., Gladkochub D.P., Harbert W.P. Paleomagnetism of the Precambrian Eastern Sayan rocks: implications for the Ediacaran-Early Cambrian paleogeography of the Tuva-Mongolian composite terrane. Tectonophysics 2010, 486:65-80. 55. Kröner A., Demoux A., Zack T., Rojas-Agramonte Y., Jian P., Tomurhuu D., Barth M. Zircon ages for a felsic volcanic rock and arc-related early Palaeozoic sediments on the margin of the Baydrag microcontinent, Central Asian orogenic belt, Mongolia. J. Asian Earth Sci. 2011, 42:1008-1017. 56. Kröner A., Kovach V., Belousova E., Hegner E., Armstrong R., Dolgopolova A., Seltmann R., Alexeiev D.V., Hoffmann J.E., Wong J., Sun M., Cai K.D., Wang T., Tong Y., Wilde S.A., Degtyarev K.E., Rytsk E.Y. Reassessment of continental growth during the accretionary history of the central Asian orogenic belt. Gondwana Res. 2014, 25:103-125. 57. New zircon ages and significance for crustal evolution in Mongolia. Assembly and Breakup of Rodinia Supercontinent: Evidence From South Siberia. Guidebook and Abstract Volume, Workshop IGCP-440 2001, (Irkutsk). A. Kröner, O. Tomurtogoo, G. Badarch, B.F. Windley, I.K. Kozakov (Eds.). 58. Kruk N.N., Rudnev S.N., Vladimirov A.G., Shokalsky S.P., Kovach V.P., Serov P.A., Volkova N.I. Early-middle Paleozoic granitoids in the Gorny Altai, Russia: implications for continental crust history and magma sources. J. Asian Earth Sci. 2011, 42:928-948. 59. Levashova N.M., Kalugin V.M., Gibsher A.S., Yff J., Ryabinin A.B., Meert J.G., Malone S.J. The origin of the Baydaric microcontinent, Mongolia: constraints from paleomagnetism and geochronology. Tectonophysics 2010, 485:306-320. 60. Levashova N.M., Meert J.G., Gibsher A.S., Grice W.C., Bazhenov M.L. The origin of microcontinents in the Central Asian Orogenic Belt: constraints from paleomagnetism and geochronology. Precambrian Res. 2011, 185:37-54. 61. Li Z.L., Chen H.L., Santosh M., Yang S.F. Discovery of ultrahigh-T spinel-garnet granulite with pure CO2 fluid inclusions from the Altay orogenic belt, NW China. J. Zhejiang Univ. Sci. 2004, 5(10):1180-1182. 62. Li H.J., He G.Q., Wu T.R., Wu B. Confirmation of Altai-Mongolia microcontinent and its implications. Acta Petrol. Sin. 2006, 22:1369-1379. (in Chinese with English abstract). 63. Liu W., Liu X.L., Xiao W.J. Massive granitoid production without massive continental crust growth in the Chinese Altay: insight into the source rock of granitoids using integrated zircon U-Pb age, Hf-Nd-Sr isotopes and geochemistry. Am. J. Sci. 2012, 312:629-684. 64. Liu Y., Hu Z., Gao S., Günther D., Xu J., Gao C., Chen H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257:34-43. 65. Long X.P., Sun M., Yuan C., Xiao W.J., Lin S.F., Wu F.Y., Xia X.P., Cai K.D. U-Pb and Hf isotopic study of zircons from metasedimentary rocks in the Chinese Altai: implications for Early Paleozoic tectonic evolution. Tectonics 2007, 10.1029/2007TC002128. 66. Long X.P., Yuan C., Sun M., Xiao W.J., Zhao G.C., Wang Y.J., Cai K.D. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: new constraints on depositional age, provenance and tectonic evolution. Tectonophysics 2010, 480:213-231. 67. Long X.P., Yuan C., Sun M., Kröner A., Zhao G.C., Wilde S., Hu A.Q. Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: evidence from Neoproterozoic granitoids in the Kuluketage area, NW China. Precambrian Res. 2011, 187:1-14. 68. Lu S.N., Li H.K., Zhang C.L., Niu G.H. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Res. 2008, 160:94-107. 69. Ludwig K.R. User's Manual for Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel 2003, Berkeley Geochronology Center, Special Publication No. 4a, Berkeley, CA. 70. McLennan S.M., Bock B., Compston W., Hemming S.R., McDaniel D.K. Detrital Zircon Geochronology of Taconian and Acadian Foreland Sedimentary Rocks in New England: Journal of Sedimentary Research 71, 305-317 2001. 71. Meert J.G., Lieberman B.S. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res. 2008, 14:5-21. 72. Mossakovsky A.A., Ruzhentsev S.V., Samygin S.G., Kheraskova T.N. Central Asian fold belt: geodynamic evolution and history of formation. Geotektonika 1993, 6:3-33. (in Russia). 73. Nelson D.R. An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U-Pb dating of detrital zircon. Sediment. Geol. 2001, 141-142:37-60. 74. Niu H.C., Hiroaki S., Zhang H.X., Ito Jun'ichi, Yu X.Y., Nagao Akashi, Terada Kentaro, Zhang Q. Juxtaposition of adakite, boninite, high-TiO2 and low-TiO2 basalts in the Devonian Southern Altay, Xinjiang, NW China. J. Asian Earth Sci. 2006, 28:439-456. 75. Ota T., Utsunomiya A., Uchio Y., Isozaki Y., Buslov M.M., Ishikawa A., Maruyama S., Kitajima K., Kaneko Y., Yamamoto H., Katayama I. Geology of the Gorny Altai subduction-accretion complex, Southern Siberia: tectonic evolution of an Ediacaran-Cambrian intra-oceanic arc-trench system. J. Asian Earth Sci. 2007, 30:666-695. 76. Rojas-Agramonte Y., Kröner A., Demoux A., Xia X., Wang W., Donskaya T., Liu D., Sun M. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Res. 2011, 19:751-763. 77. Rosen O.M., Levskii L.K., Zhuravlev D.Z., Rotman A.Y., Spetsius Z.V., Makeev A.F., Zinchuk N.N., Manakov A.V., Serenko V.P. Paleoproterozoic accretion in the Northeast Siberian craton: isotopic dating of the Anabar collision system. Stratigr. Geol. Correl. 2006, 14:581-601. 78. Rudnev S., Izokh A., Kovach V., Shelepaev R., Terent'eva L. Age, composition, sources, and geodynamic environments of the origin of granitoids in the northern part of the Ozernaya zone, Western Mongolia: growth mechanisms of the Paleozoic continental crust. Petrology 2009, 17:439-475. 79. Rudnev S.N., Borisov S.M., Babin G.A., Levchenkov O.A., Makeev A.F., Serov P.A., Matukov D.I., Plotkina Y.V. Early Paleozoic batholiths in the northern part of the Kuznetsk Alatau: composition, age, and sources. Petrology 2008, 16:395-419. 80. Rudnev S.N., Vladimirov A.G., Ponomarchuk V.A., Kruk N.N., Babin G.A., Borisov S.M. Early Paleozoic granitoid batholiths of the Altai-Sayan folded region (lateral-temporal zoning and sources). Dokl. Earth Sci. 2004, 396:492-495. (In Russian). 81. Safonova I.Yu., Maruyama S., Hirata T., Kon Y., Rino S. LA ICP MS U-Pb ages of detrital zircons from Russia largest rivers: implications for major granitoid events in Eurasia and global episodes of supercontinent formation. J. Geodyn. 2010, 50:134-153. 82. Sal'nikova E.B., Kozakov I.K., Kotov A.B., Kröner A., Todt W., Bibikova E.V., Nutman A., Yakovleva S.Z., Kovach V.P. Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt: loss of a Precambrian microcontinent. Precambrian Res. 2001, 110:143-164. 83. Schärer E., Munker C., Mezger K. Calibration of the lutetium-hafnium clock. Science 2001, 293:683-687. 84. Sengör A.C., Natal'in B.A. Paleotectonics of Asia: fragments of a synthesis. The Tectonic Evolution of Asia 1996, 486-640. Cambridge University Press. A. Yin, T.M. Harrison (Eds.). 85. Sengör A.M.C., Natal'in B.A., Burtman V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Asia. Nature 1993, 364:299-307. 86. Sisson V.B., Pavlis T.L., Roeske S.M., Thorkelson D.J. Introduction: an overview of ridge-trench interaction in modern and ancient settings. Geological Society of America, Special Paper 2003, Vol. 371:1-18. V.B. Sisson, S.M. Roeske, T.L. Pavlis (Eds.). 87. Sun M., Yuan C., Xiao W., Long X., Xia X., Zhao G., Lin S., Wu F., Kröner A. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Paleozoic. Chem. Geol. 2008, 247:352-383. 88. Sun M., Long X.P., Cai K.D., Jiang Y.D., Wang B.Y., Yuan C., Zhao G.C., Xiao W.J., Wu F.Y. Early Paleozoic ridge subduction in the Chinese Altai: insight from the marked change in zircon Hf isotopic composition. Science in China, Series D 2009, 52:1345-1358. 89. Turkina O., Nozhkin A., Bayanova T., Dmitrieva N. Isotopic provinces and evolution stages of the Precambrian crust at the southwestern margin of the Siberian Craton and its folded framing. Dokl. Earth Sci. 2007, 413:481-486. 90. Vernikovsky V.A., Vernikovskaya A.E., Kotov A.B., Sal'nikova E.B., Kovach V.P. Neoproterozoic accretionary and collisional events on the western margin of the Siberian Craton: new geological and geochronological evidence from the Yenisey Ridge. Tectonophysics 2003, 375:147-168. 91. Vladimirov A.G., Kozlov M.S., Shokal'skii S.P., Khalilov V.A., Rudnev S.N., Kruk N.N., Vystavnoi S.A., Borisov S.M., Berezikov Y.K., Metsner A.N., Babin G.A., Mamlin Murzin O.M., Nazarov G.V., Makarov V.A. Major epochs of instrusive magmatism of Kuznetsk Alatau, Altai, and Kalba (from U-Pb isotope dates). Russ. Geol. Geophys. 2001, 42:1157-1178. 92. Volkova N.I., Sklyarov E.V. High-pressure complexes of Central Asian Fold Belt: geologic setting, geochemistry, and geodynamic implications. Russ. Geol. Geophys. 2007, 48:83-90. 93. Volkova N.I., Stupakov S.I., Tret'yakov G.A., Simonov V.A., Travin A.V., Yudin D.S. Blueschists from the Uimon Zone as evidence for Ordovician accretionary collisional events in Gorny Altai. Russ. Geol. Geophys. 2005, 46:361-378. 94. Wang T., Hong D.W., Jahn B.M., Tong Y., Wang Y.B., Han B.F., Wang X.X. Timing, petrogenesis, and setting of palaeozoic synorogenic intrusions from the Altai Mountains, Northwest China: implications for the tectonic evolution of an accretionary orogen. J. Geol. 2006, 114:735-751. 95. Wang T., Jahn B.M., Kovach Victor P., Tong Y., Hong D.W., Han B.F. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos 2009, 110:359-372. 96. Wang T., Zheng Y.D., Gehrels G.E., Mu Z. Geochronological evidence for existence of South Mongolian microcontinent-a zircon U-Pb age of granitoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex. Chin. Sci. Bull. 2001, 46:2005-2008. 97. Wang Y.X., Mooney W.D., Yuan X.C., Coleman R.G. The crustal structure from the Altai Mountains to the Altyn Tagh fault, Northwest China. J. Geophys. Res. 2003, 108:2322. 10.1029/2001JB000552. 98. Wei C.J., Clarke G., Tian W., Qiu L. Transition of metamorphic series from the kyanite- to andalusite-types in the Altai orogen, Xinjiang, China: evidence from petrography and calculated KMnFMASH and KFMASH phase relations. Lithos 2007, 96(34):353-374. 99. Wilhem C., Windley B.F., Stampfli G.M. The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth Sci. Rev. 2012, 113:303-341. 100. Windley B.F., Alexeiev D., Xiao W.J., Kröner A., Badarch G. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of Geological Society London 2007, 164:31-47. 101. Windley B.F., Kröner A., Guo J., Qu G., Li Y., Zhang C. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. J. Geol. 2002, 110:719-739. 102. Woodhead J., Hergt M., Shelley S., Eggins R.Kemp Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem. Geol. 2004, 209:121-135. 103. Wu F.Y., Sun D.Y., Ge W.C., Zhang Y.B., Grant M.L., Wilde S.A., Jahn B.M. Geochronology of the Phanerozoic granitoids in Northeastern China. J. Asian Earth Sci. 2011, 41:1-30. 104. Xia X.P., Sun M., Geng H., Sun Y., Wang Y., Zhao G.C. Quasi-simultaneous determination of U-Pb and Hf isotope compositions of zircon by excimer laserablation multiple-collector ICPMS. J. Anal. At. Spectrom. 2011, 26:1868-1871. 105. Xiao W.J., Han C.M., Yuan C., Sun M., Lin S.F., Chen H.L., Li Z.L., Li J.L., Sun S. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: implications for the tectonic evolution of Central Asia. J. Asian Earth Sci. 2008, 32:102-117. 106. Xiao W.J., Huang B.C., Han C.M., Sun S., Li J.L. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res. 2010, 18:253-273. 107. Xiao W.J., Santosh M. The Western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Res. 2014, 25(4):1429-1444. 108. Xiao W.J., Windley B.F., Allen M.B., Han C.M. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 2013, 13:1316-1341. 109. Xiao W.J., Windley B.F., Badararch G., Sun S., Li J., Qin K., Wang Z. Palaeozoic accretionary and convergent tectonics of the Southern Altaids: implications for the growth of Central Asia. Journal of Geological Society London 2004, 161:1-4. 110. Xiao W.J., Windley B.F., Yuan C., Sun M., Han C.M., Lin S.F., Chen H.L., Yan Q.R., Liu D.Y., Qin K.Z., Li J.L., Sun S. Paleozoic multiple subduction-accretion processes of the Southern Altaids. Am. J. Sci. 2009, 309:221-270. 111. Xu J.F., Castillo P.R., Chen F.R., Niu H.C., Yu X.Y., Zhen Z.P. Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, Northwest China: implications for backarc mantle evolution. Chem. Geol. 2003, 193:137-154. 112. Yarmolyuk V.V., Kovach V.P., Kovalenko V.I., Salnikova E.B., Kozlovskii A.M., Kotov A.B., Yakovleva S.Z., Fedoseenko A.M. Composition, sources, and mechanism of continental crust growth in the Lake zone of the Central Asian Caledonides: I. Geological and geochronological data. Petrology 2011, 19:55-78. 113. Yarmolyuk V.V., Kovalenco V.I., Salnikova E.B. U-Pb age of syn- and postmetamorphic granitoids of southMongolia: evidence for the presence of Grenvillides in the Central Asian foldbelt. Dokl. Earth Sci. 2005, 404:986-990. 114. Yarmolyuk V.V., Kovalenko V.I., Kovach V.P., Rytsk E.Y., Kozakov I.K., Kotov A.B., Sal'nikova E.B. Early stages of the Paleoasian Ocean formation: results of geochronological, isotopic, and geochemical investigations of Late Riphean and Vendian-Cambrian complexes in the Central Asian Foldbelt. Dokl. Earth Sci. 2006, 411:1184-1189. 115. Yuan C., Sun M., Xiao W.J., Li X.H., Chen H.L., Lin S.F., Xia X.P., Long X.P. Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chem. Geol. 2007, 242:22-39. 116. Zhai M.G., Guo J.H., Liu W.J. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review. J. Asian Earth Sci. 2005, 24:547-561. 117. Zhai M.G., Liu W.J. Palaeoproterozoic tectonic history of the North China craton: a review. Precambrian Res. 2003, 122:183-199. 118. Zhang C.L., Li Z.X., Li X.H., Ye H.M. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: age, geochemistry, petrogenesis and tectonic implications. J. Asian Earth Sci. 2009, 35:167-179. 119. Zhang C.L., Yang D.S., Wang H.Y., Takahashi Y., Ye H.M. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of Northeastern Tarim Block, NW China: two phases of mafic igneous activity with different mantle sources. Gondwana Res. 2011, 19:177-190. 120. Zhao G.C., Cawood P.A., Wilde S.A., Sun M., Lu L.Z. Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution. Precambrian Res. 2000, 103:55-88. 121. Zhao G.C., He Y.H., Sun M. The Xiong' er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Res. 2009, 16:170-181. 122. Zhao G.C., Sun M., Wilde S.A., Li S.Z. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res. 2005, 136:177-202. 123. Zhu W.B., Zheng B.H., Shu L.S., Ma D.S., Wu H.L., Li Y.X., Huang W.T., Yu J.J. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, Northwestern Tarim, China: insights from LA-ICP-MS zircon U-Pb ages and geochemical data. Precambrian Res. 2011, 185:215-230. 124. Zhuang Y.X. Tectonothermal Evolution in Space and Time and Orogenic Process of Altaide 1994, China. Jilin Scientific and Technical Press, Changchun, China, (402 pp., in Chinese with English abstract). 125. Zonenshain L.P., Kuzmin M.I., Natapov L.M. Geology of the USSR: a plate tectonic synthesis. American Geophysical Union. Geodynamics Series Monograph 1990, 21. 242p.