Инд. авторы: Urakaev F.K., Tatykaev B.B., Burkitbayev M.M., Bakhadur A.M., Uralbekov B.M.
Заглавие: Mechanochemical synthesis of colloidal silver bromide particles in the nabr–agno3–nano3 system
Библ. ссылка: Urakaev F.K., Tatykaev B.B., Burkitbayev M.M., Bakhadur A.M., Uralbekov B.M. Mechanochemical synthesis of colloidal silver bromide particles in the nabr–agno3–nano3 system // Colloid Journal. - 2016. - Vol.78. - Iss. 4. - P.525-532. - ISSN 1061-933X. - EISSN 1608-3067.
Внешние системы: DOI: 10.1134/S1061933X16040190; РИНЦ: 27070975; SCOPUS: 2-s2.0-84978695660; WoS: 000380227500014;
Реферат: eng: X-ray diffraction and thermal analyses, electron microscopy, and dynamic light scattering have been employed to study silver bromide nanoparticles obtained by the mechanochemical exchange reaction NaBr + AgNO3 + zNaNO3 = (z + 1)NaNO3 + AgBr in sodium nitrate matrix (diluent and side reaction product) at z = z1 = 8.06 and z = z2 = 4.31. AgBr nanoparticles have been obtained in the free form by dissolving the matrix in water, and their activity in the photodegradation of methylene blue dye has been studied.
Ключевые слова: Sodium nitrates; Silver bromide; Photodegradation of methylene blue; Mechanochemicals; Mechanochemical synthesis; Freeforms; Exchange reaction; Colloidal silver; Silver; Thermoanalysis; Silver halides; Silver alloys; Nanoparticles; Light scattering; Aromatic compounds; X ray diffraction;
Издано: 2016
Физ. характеристика: с.525-532
Цитирование: 1. Abbasi, A.R. and Morsali, A., Ultrason. Sonochem., 2012, vol. 19, p. 540. 2. Anderson, R., Buscall, R., Eldridge, R., et al., Colloids Surf. A, 2014, vol. 459, p. 58. 3. Baranov, P.G., Romanov, N.G., Khramtsov, V.A., and Vikhnin, V.S., Nanotechnology, 2001, vol. 12, p. 540. 4. Bartlett, T.R., Sokolov, S.V., and Compton, R.G., ChemistryOpen, 2015, vol. 4, p. 600. 5. Chakraborty, M., Hsiao, F.-W., Naskar, B., et al., Langmuir, 2012, vol. 28, p. 7282. 6. Gupta, V.K.N., Mehra, A., and Thaokar, R., Colloids Surf. A, 2012, vol. 393, p. 73. 7. Husein, M.M., Rodil, E., and Vera, J.H., J. Nanopart. Res., 2007, vol. 9, p. 787. 8. Husein, M.M., Rodil, E., and Vera, J.H., Langmuir, 2006, vol. 22, p. 2264. 9. Kobayashi, B., Yamamoto, R., Ohkita, H., et al., Top. Catal., 2013, vol. 56, p. 618. 10. Koh, J.H., Kang, S.W., Park, J.T., et al., J. Membr. Sci., 2009, vol. 339, p. 49. 11. Lee, Y.S., Lee, H.-J., and Choi, W.S., Langmuir, 2014, vol. 30, p. 9584. 12. Moosavi, R., Abbasi, A.R., Yousefi, M., et al., Ultrason. Sonochem., 2012, vol. 19, p. 1221. 13. Ray, M. and Paria, S., Ind. Eng. Chem. Res., 2011, vol. 50, p. 11601. 14. Seki, K., Yanagi, H., Kobayashi, Y., et al., Phys. Rev. B: Condens. Matter, 1994, vol. 49, p. 2760. 15. Shiba, F. and Okawa, Y., J. Phys. Chem. B, 2005, vol. 109, p. 21664. 16. Yang, M., Zhao, J.-G., and Li, J.-J., Colloids Surf. A, 2007, vol. 295, p. 81. 17. Yang, M. and Zhou, K., Appl. Surf. Sci., 2011, vol. 257, p. 2503. 18. An, C., Wang, J., Jiang, W., et al., Nanoscale, 2012, vol. 4, p. 5646. 19. Choi, W.S. Byun, G.Y., et al., ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 11225. 20. Dong, Y.-Y., He, J., Sun, S.-L., et al., Carbohydr. Res., 2013, vol. 98, p. 168. 21. Jiang, J., Li, H., and Zhang, L., Chem.-Eur. J., 2012, vol. 18, p. 6360. 22. Kuai, L., Geng, B., Chen, X., et al., Langmuir, 2010, vol. 26, p. 18723. 23. Suchomel, P., Kvitek, L., Panacek, A., et al., PLoS ONE, 2015, vol. 10, p. 0119202. 24. Wang, Z., Liu, J., and Chen, W., Dalton Trans., 2012, vol. 41, p. 4866. 25. Zhu, M., Chen, C., Chen, P., et al., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 12709. 26. Cao, J., Luo, B., Lin, H., et al., J. Hazard. Mater., 2012, vols. 217–218, p. 107. 27. Katsumata, H., Hayashi, T., Taniguchi, M., et al., Mater. Sci. Semicond. Process., 2014, vol. 25, p. 68. 28. Wang, B., Gu, X., Zhao, Y., and Qiang, Y., Appl. Surf. Sci., 2013, vol. 283, p. 396. 29. Wang, W.S., Du, H., Wang, R.X., et al., Nanoscale, 2013, vol. 5, p. 3315. 30. Wang, X., Yuan, S., Chen, S., et al., Res. Chem. Intermediates, 2015, vol. 41, p. 5137. 31. Lin, H.L., Cao, J., Luo, B.D., et al., Chin. Sci. Bull., 2012, vol. 57, p. 2901. 32. Ye, L., Liu, J., Gong, C., et al., ACS Catal., 2012, vol. 2, p. 1677. 33. Jin, L., Zhu, G., Hojamberdiev, M., et al., Ind. Eng. Chem. Res., 2014, vol. 53, p. 13718. 34. Zhang, L.S., Wong, K.H., Yip, H.Y., et al., Environ. Sci. Technol., 2010, vol. 44, p. 1392. 35. Cao, J., Luo, B., Lin, H., and Chen, S., J. Hazard. Mater., 2011, vol. 190, p. 700. 36. Wang, P., Huang, B., Qin, X., et al., Inorg. Chem., 2009, vol. 48, p. 10697. 37. Yu, H., Xu, L., Wang, P., et al., Appl. Catal. B, 2014, vol. 144, p. 75. 38. Cao, Y., Li, C., Li, J., et al., Nanoscale Res. Lett., 2015, vol. 10, p. 251. 39. Li, X., Tang, D., Tang, F., et al., Mater. Res. Bull., 2014, vol. 56, p. 125. 40. Pirhashemi, M. and Habibi-Yangjeh, A., Appl. Surf. Sci., 2013, vol. 283, p. 1080. 41. Cui, W., Wang, H., Liang, Y., et al., Chem. Eng. J., 2013, vol. 230, p. 10. 42. Liang, Y., Lin, S., Liu, L., et al., Mater. Res. Bull., 2014, vol. 56, p. 25. 43. Liang, Y., Lin, S., Liu, L., et al., Chin. J. Inorg. Chem., 2014, vol. 30, p. 2675. 44. Hu, C., Lan, Y., Qu, J., et al., J. Phys. Chem. B, 2006, vol. 110, p. 4066. 45. Seo, J.H., Jeon, W.I., Dembereldorj, U., et al., J. Hazard. Mater., 2011, vol. 198, p. 347. 46. Velmurugan, R., Sreedhar, B., and Swaminathan, M., Chem. Cent. J., 2011, vol. 5, p. 46. 47. Wang, X. and Lim, T.T., Water Res., 2013, vol. 47, p. 4148. 48. Li, Y., Zhao, Y., Fang, L., et al., Mater. Lett., 2014, vol. 126, p. 5. 49. Xu, Y., Xu, H., Yan, J., et al., Colloids Surf. A, 2013, vol. 436, p. 474. 50. Yang, Y., Guo, W., Guo, Y., et al., J. Hazard. Mater., 2014, vol. 271, p. 150. 51. Fang, Z., Li, S., Gong, Y., et al., J. Saudi Chem. Soc., 2014, vol. 18, p. 299. 52. Shi, H., Chen, J., Li, G., et al., ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 6959. 53. Pourahmad, A., Sohrabnezhad, Sh., and Kashefian, E., Spectrochim. Acta A, 2010, vol. 77, p. 1108. 54. Zhang, J., Li, B., and Yang, W., Micropor. Mesopor. Mater., 2014, vol. 194, p. 66. 55. Zang, Y., Farnood, R., and Currie, J., Chem. Eng. Sci., 2009, vol. 64, p. 2881. 56. Elahifard, M.R., Rahimnejad, S., Haghighi, S., and Gholami, M.R., J. Am. Chem. Soc., 2007, vol. 129, p. 9552. 57. Xi, M., Li, J., Wu, L., and Li, X., ECS J. Solid State Sci. Technol., 2015, vol. 4, no. 8, p. Q67. 58. Wang, Z., Yin, L., Chen, Z., et al., J. Nanomater., 2014, vol. 2014, p. 150150. 59. Li, G., Wong, K.H., Zhang, X., et al., Chemosphere, 2009, vol. 76, p. 1185. 60. Tian, B., Wang, T., Dong, R., et al., Appl. Catal. B, 2014, vol. 147, p. 22. 61. Jiang, D., Du, X., Liu, Q., et al., Chem. Commun., 2015, vol. 51, p. 4451. 62. Shah, M.S.A.S., Kim, W.-J., Park, J., et al., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 20819. 63. Zhu, M., Chen, P., and Liu, M., ACS Nano, 2011, vol. 5, p. 4529. 64. Zhang, X., Chen, Y.L., Liu, R.S., and Tsai, D.P., Rep. Prog. Phys., 2013, vol. 76, p. 046401. 65. Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemannt, D.W., Chem. Rev., 1995, vol. 95, p. 69. 66. Kisch, H., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 812. 67. Wang, H., Zhang, L., Chen, Z., et al., Chem. Soc. Rev., 2014, vol. 43, p. 5234. 68. Yang, Y. and Zhang, G., Appl. Clay Sci., 2012, vols. 67–68, p. 11. 69. Tatykaev, B.B., Burkitbayev, M.M., Uralbekov, B.M., and Urakaev, F.Kh., Acta Phys. Pol. A, 2014, vol. 126, p. 1044. 70. Urakaev, F.Kh., Burkitbaev, M.M., Tatykaev, B.B., and Uralbekov, B.M., Colloid J., 2015, vol. 77, p. 641. 71. Urakaev, F.Kh., Mendeleev Commun., 2011, vol. 21, p. 266. 72. Lin, S., Hu, J., Liu, L., et al., Chem. Bull. / Huaxue Tongbao, 2014, vol. 77, p. 37. 73. Botasin, S. and Mendez, E., J. Nanopart. Res., 2013, vol. 15, p. 1526. 74. Liang, Y., Lin, S., Liu, L., et al., Appl. Catal. B, 2015, vol. 164, p. 192.