Инд. авторы: Likhanov I.I., Nozhkin A.D., Reverdatto V.V., Krylov A.A., Kozlov P.S., Khiller V.V.
Заглавие: Metamorphic evolution of ultrahigh-temperature fe- and al-rich granulites in the south yenisei ridge and tectonic implications
Библ. ссылка: Likhanov I.I., Nozhkin A.D., Reverdatto V.V., Krylov A.A., Kozlov P.S., Khiller V.V. Metamorphic evolution of ultrahigh-temperature fe- and al-rich granulites in the south yenisei ridge and tectonic implications // Petrology. - 2016. - Vol.24. - Iss. 4. - P.392-408. - ISSN 0869-5911. - EISSN 1556-2085.
Внешние системы: DOI: 10.1134/S086959111603005X; РИНЦ: 27035512; SCOPUS: 2-s2.0-84978399497; WoS: 000379865600004;
Реферат: eng: This study provides the first evidence for the occurrence of ultrahigh-temperature (UHT) granulite-facies metamorphism in the Yenisei Ridge (Angara–Kan block). UHT metamorphism is documented in Fe-Al-rich metapelites on the basis of the garnet–hypersthene–sillimanite–cordierite–plagioclase–biotite–spinel–quartz–K-feldspar assemblage. Microtextural relationships and compositional data for paragneisses of the Kan complex attest to three distinct metamorphic episodes: (M1) pre-peak prograde (820⎯900°C/5.5–7 kbar), (M2) peak UHT (920–1000°C/7–9 kbar), and (M3) post-peak retrograde (770⎯900°C/5.5–7.5 kbar). The observed counterclockwise P–T evolution at a high geothermal gradient (dT/dP = 100–200°C/kbar) suggests that UHT metamorphic assemblages were formed in an overall extensional tectonic setting accompanied by underplating of mantle-derived mafic magmas, which may be sourced from ~1750 Ma giant radiating dike swarms linked to the Vilyuy mantle plume as part of the Trans-Siberian LIP. The broad synchroneity of UHT metamorphism (1744 ± 26 Ma; monazite–zircon isochron age) and rift-related endogenic activity in the region can provide an additional line of evidence for the two-stage evolution of granulite-facies metamorphism in the Angara–Kan block. The Aldan–Stanovoy, Anabar, and Baikal basement inliers of high-grade metamorphic rocks within the Siberian craton record two Paleoproterozoic peaks (1.9 and 1.75 Ga) of granulite-facies metamorphism. The synchronous sequence of tectonothermal events at the periphery of the large Precambrian Laurentian, Baltica, and Siberian cratons provide convincing evidence for their spatial proximity over a wide time interval, which is consistent with the most recent paleomagnetic reconstructions of the Proterozoic supercontinent Nuna.
Издано: 2016
Физ. характеристика: с.392-408
Цитирование: 1. Ague, J.J., Evidence for major mass transfer and volume strain during regional metamorphism of pelites, Geology, 1991, vol. 19, pp. 855–858. 2. Aranovich, L.Y. and Berman, R.G., A new garnet–orthopyroxene thermometer based on reversed Al2O3 solubility in FeO–Al2O3–SiO2 orthopyroxene, Am. Mineral., 1997, vol. 82, pp. 345–353. 3. Berman, R.G. and Aranovich, L.Y., Optimized standard state and solution properties of minerals, Contrib. Mineral. Petrol., 1996, vol. 126, nos. 1–2, pp. 1–24. 4. Bhattacharya, A., Krishnakumar, K.R., Raith, M., and Sen, S.K., An improved set of a–X parameters for Fe–Mg–Ca garnets and refinements of the orthopyroxene–garnet thermometer and the orthopyroxene–garnet–plagioclase–quartz barometer, J. Petrol., 1991, vol. 32, pp. 629–656. 5. Bibikova, E.V., Gracheva, T.V., Makarov, V.A., and Nozhkin, A.D., Age boundaries in the geological evolution of the Early Precambrian of the Yenisei Range, Stratigr. Geol. Korrelyatsiya, 1993, vol. 1, no. 1, pp. 35–40. 6. Carrington, D.P. and Harley, S.L., Partial melting and phase relations in high-grade metapelites: an experimental grid in the KFMASH system, Contrib. Mineral. Petrol., 1995, vol. 120, pp. 270–291. 7. Dahl, P.S., The thermal–compositional dependence of Fe2+–Mg distributions between coexisting garnet and pyroxene: applications to geothermometry, Am. Mineral., 1980, vol. 65, pp. 852–866. 8. Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Glubinnaya geodinamika (Deep Geodynamics), Novosibirsk: SO RAN, fil. “GEO”, 2001. 9. Evans, D.A.D. and Mitchell, R.N., Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic Supercontinent Nuna, Geology, 2011, vol. 39, no. 5, pp. 443–446. 10. Frost, C.D. and Frost, B.R., On ferroan (A-type) granitoids: their compositional variability and modes of origin, J. Petrol., 2011, vol. 52, pp. 39–53. 11. Gladkochub, D.P., Pisarevsky, S.A., Donskaya, T.V., Ernst, R.E., Wingate, M.T.D., Sö derlund, U., Mazukabzov, A.M., and Sklyarov, E.V., Proterozoic mafic magmatism in Siberian craton: an overview and implications for paleocontinental reconstruction, Precambrian Res., 2010, vol. 183, pp. 660–668. 12. Harley, S.L., An experimental study of partitioning of Fe and Mg between garnet and orthopyroxene, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 359–373. 13. Harley, S.L. and Motoyoshi, Y., Al zoning in orthopyroxene in a sapphirine quartzite: evidence for >1120°C UHT metamorphism in the Napier Complex, Antarctica, and implications for the entropy of sapphirine, Contrib. Mineral. Petrol., 2000, vol. 138, pp. 293–307. 14. Harley, S.L., Refining the P-T records of UHT crustal metamorphism, J. Metamorph. Geol., 2008, vol. 26, pp. 125–154. 15. Holdaway, M.J., Application of new experimental and garnet Margules data to the garnet–biotite geothermometer, Am. Mineral., 2000, vol. 85, pp. 881–892. 16. Kelsey, D.E. and Hand, M., On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings, Geosci. Front., 2015, vol. 6, pp. 311–356. 17. Korikovsky, S.P., Fatsii metamorfizma metapelitov (Metamorphic Facies of Metapelites), Moscow: Nauka, 1979. 18. Kozlov, P.S., Likhanov, I.I., Reverdatto, V.V., and Zinov’ev, S.V., Tectonometamorphic evolution of the Garevka polymetamorphic complex, Yenisei Range, Russ. Geol. Geophys., 2012, vol. 53, no. 11, pp. 1133–1149. 19. Lal, R.K., Internally consistent recalibrations of mineral equilibria for geothermobarometry involving garnet–orthopyroxene–plagioclase–quartz assemblages and their application to the South Indian granulites, J. Metamorph. Geol., 1993, vol. 11, pp. 855–866. 20. Lee, H.Y. and Ganguly, J., Equilibrium compositions of coexisting orthopyroxene and garnet: experimental determinations in the system FeO–MgO–Al2O3–SiO2, J. Petrol., 1988, vol. 29, pp. 93–113. 21. Likhanov, I.I. and Reverdatto, V.V., Provenance of Precambrian Feand Al-rich metapelites in the Yenisey Ridge and Kuznetsk Alatau, Siberia: geochemical signatures, Acta Geol. Sin. (Engl. Ed.), 2007, vol. 81, pp. 409–423. 22. Likhanov, I.I. and Reverdatto, V.V., Geochemistry, age, and petrogenesis of rocks from the Garevka metamorphic complex, Yenisey Ridge, Geochem. Int., 2014a, vol. 52, no. 1, pp. 1–21. 23. Likhanov, I.I. and Reverdatto, V.V., P–T–t constraints on the metamorphic evoluiton of the Transangarian Yenisei Ridge: geodynamic and petrological implications, Russ. Geol. Geophys., 2014b, vol. 55, no. 3, pp. 299–322. 24. Likhanov, I.I. and Reverdatto, V.V., Evidence of Middle Neoproterozoic extensional tectonic settings along the western margin of the Siberian Craton: implications for the breakup of Rodinia, Geochem. Int., 2015, vol. 53, no. 8, pp. 671–689. 25. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Khiller, V.V., and Sukhorukov, V.P., P-T-t constraints on polymetamorphic complexes of the Yenisey Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions, J. Asian Earth Sci., 2015, vol. 113, pp. 391–410. 26. Likhanov, I.I., Polyansky, O.P., Reverdatto, V.V., and Memmi, I., Evidence from Feand Al-rich metapelites for thrust loading in the Transangarian Region of the Yenisey Ridge, Eastern Siberia, J. Metamorph. Geol, 2004, vol. 22, pp. 743–762. 27. Likhanov, I.I., Kozlov, P.S., Popov, N.V., Reverdatto, V.V., and Vershinin, A.E., Collisional metamorphism as a result of thrusting in the Transangara Region of the Yenisei Ridge, Dokl. Earth Sci., 2006, vol. 411, no. 2, pp. 1313–1317. 28. Likhanov, I.I. and Reverdatto, V.V., Lower Proterozoic metapelites in the northern Yenisei Range: nature and age of the protolith and the behavior of material during collisional metamorphism, Geochem. Int., 2011, vol. 49, no. 3, pp. 224–252. 29. Likhanov, I.I., Reverdatto, V.V., and Kozlov, P.S., Collisionrelated metamorphic complexes of the Yenisei Ridge: their evolution, ages, and exhumation rate, Russ. Geol. Geophys., 2011, vol. 52, no. 10, pp. 1256–1269. 30. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., and Khiller, V.V., The first data on Mesoproterozoic tectonic events in the geological history of the south Yenisei Ridge, Dokl. Earth Sci., 2013a, vol. 453, no. 2, pp. 1274–1277. 31. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Khiller, V.V., and Sukhorukov, V.P., Three metamorphic events in the Precambrian P–T–t history of the Transangarian Yenisey Ridge recorded in garnet grains in metapelites, Petrology, 2013b, vol. 21, no. 6, pp. 561–578. 32. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., and Zinov’ev, S.V., Neoproterozoic metamorphic evolution in the Transangarian Yenisei Ridge: evidence from monazite and xenotime geochronology, Dokl. Earth Sci., 2013c, vol. 450, no. 1, pp. 556–561. 33. Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., and Kozlov, P.S., Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian Craton, Geotectonics, 2014, vol. 48, no. 5, pp. 371–389. 34. Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., Kozlov, P.S., and Khiller, V.V., P–T evolution of ultrahigh temperature metamorphism: evidence for a Late Paleoproterozoic intraplate extension at the southwestern margin of the Siberian Craton, Dokl. Earth Sci., 2015a, vol. 465, no. 1, pp. 1139–1142. 35. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Zinoviev, S.V., and Khiller, V.V., P-T-t reconstructions of south Yenisei Ridge metamorphic history (Siberian Craton): petrological consequences and application to the supercontinental cycles, Russ. Geol. Geophys., 2015b, vol. 56, no. 6, pp. 805–824. 36. Neimark, L.A., Nemchin, A.A., and Rozen, O.M., Sm-Nd isotope systems in the lower crustal xenoliths from Yakutiak kimberlites, Dokl. Akad. Nauk, 1992, vol. 327, no. 3, pp. 374–378. 37. Nozhkin, A.D., Turkina, O.M., Likhanov, I.I., and Dmitrieva, N.V., Late Paleoproterozoic volcanic associations in the southwestern Siberian Craton (Angara–Kan block), Russ. Geol. Geophys., 2016, vol. 57, no. 2, pp. 247–264. 38. Nozhkin, A.D., Turkina, O.M., and Bayanova, T.B., Paleoproterozoic collisional and intraplate granitoids of the southwest margin of the Siberian Craton: petrogeochemical features and U-Pb geochronological and Sm-Nd isotopic data, Dokl. Earth Sci., 2009, vol. 428, no. 7, pp. 1192–1197. 39. Pattison, D.R.M., Chacko, T., Farquhar, J., and McFarlane, C.R.M., Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange, J. Petrol., 2003, vol. 44, pp. 867–900. 40. Perchuk, L.L., Gerya, T., and Nozhkin, A., Petrology and retrograde P-t path in granulites of the Kanskaya Formation, Yenisey Range, Eastern Siberia, J. Metamorph. Geol., 1989, vol. 7, pp. 599–617. 41. Perchuk, L.L., Derivation of a thermodynamically consistent set of geothermometers and geobarometers for metamorphic and magmatic rocks, in Progress in Metamorphic and Magmatic Petrology, Perchuk, L.L., Ed., Cambridge: Cambridge University Press, 1991, pp. 93–112. 42. Popov, N.V., A tectonic model of the Early Precambrian evolution of the south Yenisei Range, Russ. Geol. Geophys., 2001, vol. 42, no. 7, pp. 1028–1041. 43. Powell, R. and Holland, T.J.B., Optimal geothermometry and geobarometry, Am. Mineral., 1994, vol. 79, pp. 120–133. 44. Rosen, O.M., Condie, K.C., Natapov, L.M., and Nozhkin, A.D., Archean and early Proterozoic evolution of the Siberian craton, a preliminary assessment, in Archean Crustal Evolution, Condie, K.S, Ed., Amsterdam: Elsevier, 1994, pp. 411–459. 45. Sandiford, M. and Powell, R., Some remarks on high-temperature–low-pressure metamorphism in convergent orogens, J. Metamorph. Geol., 1991, vol. 9, pp. 333–340. 46. Sen, S.K. and Bhattacharya, A., An orthopyroxene–garnet thermometer and its application to the Madras charnockites, Contrib. Mineral. Petrol., 1984, vol. 88, pp. 64–71. 47. Symmes, G.H. and Ferry, J.M., The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism, J. Metamorph. Geol., 1992, vol. 10, pp. 221–237. 48. Taylor, S.R. and Mak-Lennan, S.M., The Continental Crust: Its Composition and Evolution, Blackwell: Oxford, 1988. 49. Thompson, A.B., Mineral reactions in pelitic rocks: II. Calculation of some P-T-x(Fe–Mg) phase relations, Am. J. Sci., 1976, vol. 276, pp. 425–454. 50. Turkina, O.M., Bibikova, E.V., and Nozhkin, A.D., Stages and geodynamic settings of Early Proterozoic granite formation on the southwestern margin of the Siberian Craton, Dokl. Earth Sci., 2003, vol. 389, no. 2, pp. 159–163. 51. Turkina, O.M., Berezhnaya, N.G., Lepekhina, E.N., and Kapitonov, I.N., Age of mafic granulites from the Early Precambrian metamorphic complex of the Angara–Kan Terrain (southwestern Siberian Craton): U–Pb and Lu–Hf isotope and REE composition of zircon, Dokl. Akad. Nauk, 2012, vol. 445, no. 2, pp. 986–993. 52. White, R.W., Powell, R., and Clarke, G.L., The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave block, Central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3, J. Metamorph. Geol., 2002, vol. 20, pp. 41–55. 53. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.