Инд. авторы: Chen M.., Sun M.., Zhao G., Buslov M.M., Kulikova A.V., Rubanova E.S., Cai K.
Заглавие: Crustal melting and magma mixing in a continental arc setting: evidence from the yaloman intrusive complex in the gorny altai terrane, central asian orogenic belt
Библ. ссылка: Chen M., Sun M., Zhao G., Buslov M.M., Kulikova A.V., Rubanova E.S., Cai K. Crustal melting and magma mixing in a continental arc setting: evidence from the yaloman intrusive complex in the gorny altai terrane, central asian orogenic belt // Lithos. - 2016. - Vol.252-253. - P.76-91. - ISSN 0024-4937. - EISSN 1872-6143.
Внешние системы: DOI: 10.1016/j.lithos.2016.02.016; РИНЦ: 27043902; SCOPUS: 2-s2.0-84960106914; WoS: 000374599800006;
Реферат: eng: Granitoids and their hosted mafic enclaves may retain important information on crust-mantle interaction, and thus are significant for study of crustal growth and differentiation. An integrated petrological, geochronological and geochemical study on the granitoid plutons of the Yaloman intrusive complex from the Gorny Altai terrane, northwestern Central Asian Orogenic Belt, was conducted to determine their source nature, petrogenesis and geodynamics. Mafic enclaves are common in the plutons, and a zircon U-Pb age (389 Ma ± 4 Ma) indicates that they are coeval with their granitoid hosts (ca. 393-387 Ma). Petrographic observations reveal that these mafic enclaves probably represent magmatic globules commingled with their host magmas. The relatively low SiO2 contents (46.0-60.7 wt.%) and high Mg# (38.9-56.5) further suggest that mantle-derived mafic melts served as a crucial component in the formation of these mafic enclaves. The granitoid hosts, including quartz diorites and granodiorites, are I-type in origin, possessing higher SiO2 contents (60.2-69.9 wt.%) and lower Mg# (32.0-44.2). Their zircon Hf and whole-rock Nd isotopic compositions indicate that the magmas were dominated by remelting of Neoproterozoic (0.79-1.07 Ga) crustal materials. Meanwhile, the geochemical modeling, together with the common occurrence of igneous mafic enclaves and the observation of reversely zoned plagioclases, suggests that magma mixing possibly contributed significantly to the geochemical variation of the granitoid hosts. Our results imply that mafic magmas from the mantle not only provided substantial heat to melt the lower crust, but also mixed with the crust-derived melts to form the diverse granitoids.The oxidizing and water-enriched properties inferred from the mineral assemblages and compositions imply that the granitoid plutons of the Yaloman intrusive complex were possibly formed in a continental arc-related setting, which is also supported by their geochemistry. The Devonian granitoids from the Gorny Altai terrane show remarkable temporal-spatial-petrogenetic affinities to the counterparts from the Altai-Mongolian terrane, indicating that these two terranes were possibly under subduction of the same oceanic plate (i.e., the Ob-Zaisan Ocean). The voluminous granitoids signify significant crustal recycling and growth as a response to the underplating of extensive mantle-derived basaltic melts.
Ключевые слова: Magma mixing; mafic enclaves; granitoids; Gorny Altai terrane; crustal melting; Subduction zone;
Издано: 2016
Физ. характеристика: с.76-91
Цитирование: 1. Abdel-Rahman A.-F.M. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of Petrology 1994, 35:525-541. 2. Anderson J.L., Smith D.R. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist 1995, 80:549-559. 3. Annen C., Blundy J.D., Sparks R.S.J. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology 2006, 47:505-539. 4. Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 1999, 46:605-626. 5. Batchelor R.A., Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology 1985, 48:43-55. 6. Bea F., Pereira M.D., Stroh A. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology 1994, 117:291-312. 7. Beard J.S., Lofgren G.E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrology 1991, 32:365-401. 8. Berzin N., Coleman R., Dobretsov N., Zonenshain L., Xiao X., Chang E. Geodynamic map of the western part of the Paleoasian ocean. Russian Geology and Geophysics 1994, 35:5-22. 9. Blichert-Toft J., Chauvel C., Albarède F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology 1997, 127:248-260. 10. Bogaerts M., Scaillet B., Auwera J.V. Phase equilibria of the Lyngdal granodiorite (Norway): implications for the origin of metaluminous ferroan granitoids. Journal of Petrology 2006, 47:2405-2431. 11. Borg L.E., Clynne M.A. The petrogenesis of felsic calc-alkaline magmas from the southernmost Cascades, California: origin by partial melting of basaltic lower crust. Journal of Petrology 1998, 39:1197-1222. 12. Bottazzi P., Tiepolo M., Vannucci R., Zanetti A., Brumm R., Foley S.F., Oberti R. Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/LDREE. Contributions to Mineralogy and Petrology 1999, 137:36-45. 13. Buslov M., Berzin N., Dobretsov N., Simonov V. Geology and Tectonics of Gorny Altai 1993, 122. UIGGM, Novosibirsk. 14. Buslov M., Saphonova I., Watanabe T., Obut O., Fujiwara Y., Iwata K., Semakov N., Sugai Y., Smirnova L., Kazansky A. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosciences Journal 2001, 5:203-224. 15. Buslov M.M., Watanabe T., Saphonova I.Y., Iwata K., Travin A., Akiyama M. A Vendian-Cambrian Island arc system of the Siberian continent in Gorny Altai (Russia, Central Asia). Gondwana Research 2002, 5:781-800. 16. Buslov M.M., Watanabe T., Smirnova L.V., Fujiwara Y., Iwata K., De Grave J., Semakov N.N., Travin A.V., Kir'ynova A.P., Kokh D.A. Role of strike-slip faulting in Late Paleozoic-Early Mesozoic tectonics and geodynamics of the Altai-Sayan and East Kazakhstan regions. Russian Geology and Geophysics 2003, 44:49-75. 17. Buslov M.M., Fujiwara Y., Iwata K., Semakov N.N. Late Paleozoic-Early Mesozoic geodynamics of Central Asia. Gondwana Research 2004, 7:791-808. 18. Buslov M.M., Watanabe T., Fujiwara Y., Iwata K., Smirnova L.V., Safonova I.Y., Semakov N.N., Kiryanova A.P. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. Journal of Asian Earth Sciences 2004, 23:655-671. 19. Buslov M.M., Safonova I.Y. Siberian continent margins, Altai-Mongolian Gondwana-derived terrane and their separating suture-shear zone. Guide-book to the Field Excursion of the International Workshop "Geodynamic Evolution, Tectonics and Magmatism of the Central Asian Orogenic belt" 2010. 20. Buslov M.M. Tectonics and geodynamics of the Central Asian foldbelt: the role of Late Paleozoic large-amplitude strike-slip faults. Russian Geology and Geophysics 2011, 52:52-71. 21. Buslov M.M., Geng H., Travin A.V., Otgonbaatar D., Kulikova A.V., Ming C., Stijn G., Semakov N.N., Rubanova E.S., Abildaeva M.A., Voitishek E.E., Trofimova D.A. Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-Sayan folded area. Russian Geology and Geophysics 2013, 54:1250-1271. 22. Cai K., Sun M., Yuan C., Zhao G., Xiao W., Long X., Wu F. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences 2011, 42:949-968. 23. Cai K., Sun M., Xiao W., Buslov M.M., Yuan C., Zhao G., Long X. Zircon U-Pb geochronology and Hf isotopic composition of granitoids in Russian Altai Mountain, Central Asian Orogenic Belt. American Journal of Science 2014, 314:580-612. 24. Cai K., Sun M., Jahn B.-M., Xiao W., Yuan C., Long X., Chen H., Tumurkhuu D. A synthesis of zircon U-Pb ages and Hf isotopic compositions of granitoids from Southwest Mongolia: implications for crustal nature and tectonic evolution of the Altai superterrane. Lithos 2015, 232:131-142. 25. Chappell B.W., White A.J.R. I- and S-type granites in the Lachlan Fold Belt. Geological Society of America Special Papers 1992, 272:1-26. 26. Chappell B.W., White A.J.R. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences 2001, 48:489-499. 27. Charlier B., Namur O., Toplis M.J., Schiano P., Cluzel N., Higgins M.D., Auwera J.V. Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology 2011, 39:907-910. 28. Chen M., Sun M., Buslov M.M., Cai K., Zhao G., Zheng J., Rubanova E.S., Voytishek E.E. Neoproterozoic-middle Paleozoic tectono-magmatic evolution of the Gorny Altai terrane, northwest of the Central Asian Orogenic Belt: constraints from detrital zircon U-Pb and Hf-isotope studies. Lithos 2015, 233:223-236. 29. Clowe C.A., Popp R.K., Fritz S.J. Experimental investigation of the effect of oxygen fugacity on ferric-ferrous ratios and unit-cell parameters of four natural clinoamphiboles. American Mineralogist 1988, 73:487499. 30. Daukeev S.Z., Kim B.C., Li T., Petrov O.V., Tomurtogoo O. Altas of Geological Maps of Central Asia and Adjacent Areas 2008, Geological Publishing House. 31. Davidson J., Turner S., Handley H., Macpherson C., Dosseto A. Amphibole "sponge" in arc crust?. Geology 2007, 35:787-790. 32. Debari S.M., Sleep N.H. High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: implications for primary magmas and the nature of arc crust. Geological Society of America Bulletin 1991, 103:37-47. 33. Dufek J., Bergantz G.W. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt-crust interaction. Journal of Petrology 2005, 46:2167-2195. 34. Dobretsov N.L., Berzin N.A., Buslov M.M. Opening and tectonic evolution of the Paleo-Asian Ocean. International Geology Review 1995, 37:335-360. 35. Dobretsov N.L., Buslov M.M., Vernikovsky V.A. Neoproterozoic to early Ordovician evolution of the paleo-Asian Ocean: implications to the break-up of Rodinia. Gondwana Research 2003, 6:143-159. 36. Filippova I., Bush V., Didenko A. Middle Paleozoic subduction belts: the leading factor in the formation of the Central Asian fold-and-thrust belt. Russian Journal of Earth Sciences 2001, 3:405-426. 37. Foster M. Interpretation of the composition of trioctahedral micas. U.S. Geological Survey Professional Paper 1960, 354:11-49. 38. Fourcade S., Javoy M. Sr-Nd-O isotopic features of mafic microgranular enclaves and host granitoids from the Pyrenees, France: evidence for their hybrid nature and inference on their origin. Enclaves and granite petrology 1991, 345. Elsevier, Amsterdam. 39. France-Lanord C., Le Fort P. Crustal melting and granite genesis during the Himalayan collision orogenesis. Transactions of the Royal Society of Edinburgh: Earth Sciences 1988, 79:183-195. 40. Frost C.D., Bell J.M., Frost B.R., Chamberlain K.R. Crustal growth by magmatic underplating: isotopic evidence from the northern Sherman batholith. Geology 2001, 29:515-518. 41. Glorie S., De Grave J., Buslov M.M., Zhimulev F.I., Izmer A., Vandoorne W., Ryabinin A., Van den haute P., Vanhaecke F., Elburg M.A. Formation and Palaeozoic evolution of the Gorny-Altai-Altai-Mongolia suture zone (South Siberia): zircon U/Pb constraints on the igneous record. Gondwana Research 2011, 20:465-484. 42. Harris N.B.W., Pearce J.A., Tindle A.G. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications 1986, 19:67-81. 43. Holbrook W.S., Lizarralde D., McGeary S., Bangs N., Diebold J. Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 1999, 27:31-34. 44. Holland T., Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 1994, 116:433-447. 45. Hu Z.C., Gao S., Liu Y.S., Hu S.H., Chen H.H., Yuan H.L. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry 2008, 23:1093-1101. 46. Hu Z.C., Liu Y.S., Gao S., Hu S.H., Dietikerc R., Günther D. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2008, 23:1192-1203. 47. Hu Z., Liu Y., Gao S., Liu W., Zhang W., Tong X., Lin L., Zong K., Li M., Chen H., Zhou L., Yang L. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry 2012, 27:1391-1399. 48. Huppert H.E., Sparks R.S.J., Turner J.S. Effects of volatiles on mixing in calc-alkaline magma systems. Nature 1982, 297:554-557. 49. Irvine T.N., Baragar W.R.A. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 1971, 8:523-548. 50. Jacob K., Farmer G.L., Buchwaldt R., Bowring S. Deep crustal anatexis, magma mixing, and the generation of epizonal plutons in the Southern Rocky Mountains, Colorado. Contributions to Mineralogy and Petrology 2015, 169:1-23. 51. Jagoutz O., Schmidt M., Enggist A., Burg J.-P., Hamid D., Hussain S. TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust. Contributions to Mineralogy and Petrology 2013, 166:1099-1118. 52. Jahn B.-M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geological Society, London, Special Publications 2004, 226:73-100. 53. Khain E.V., Bibikova E.V., Kröner A., Zhuravlev D.Z., Sklyarov E.V., Fedotova A.A., Kravchenko-Berezhnoy I.R. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth and Planetary Science Letters 2002, 199:311-325. 54. Kruk N., Babin G., Kruk E., Rudnev S., Kuibida M. Petrology of volcanic and plutonic rocks from the Uimen-Lebed'terrain, Gorny Altai. Petrology 2008, 16:512-530. 55. Kruk N.N., Vladimirov A.G., Babin G.A., Shokalsky S.P., Sennikov N.V., Rudnev S.N., Volkova N.I., Kovach V.P., Serov P.A. Continental crust in Gorny Altai: nature and composition of protoliths. Russian Geology and Geophysics 2010, 51:431-446. 56. Kruk N.N., Rudnev S.N., Vladimirov A.G., Shokalsky S.P., Kovach V.P., Serov P.A., Volkova N.I. Early-Middle Paleozoic granitoids in Gorny Altai, Russia: implications for continental crust history and magma sources. Journal of Asian Earth Sciences 2011, 42:928-948. 57. Kuibida Y.V., Kruk N.N., Gusev N.I., Vladimirov V.G., Demonterova E.I. Geochemistry of metamorphic rocks of the Kurai block (Gorny Altai). Russian Geology and Geophysics 2014, 55:411-427. 58. Kuritani T., Yoshida T., Kimura J.-I., Hirahara Y., Takahashi T. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc: implications for differentiation mechanism of frontal-arc basalt magmas. Miner Petrol 2014, 108:1-11. 59. Le Fort P., Cuney M., Deniel C., France-Lanord C., Sheppard S.M.F., Upreti B.N., Vidal P. Crustal generation of the Himalayan leucogranites. Tectonophysics 1987, 134:39-57. 60. Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Grice M.C., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist 1997, 35:219-246. 61. Lee C.-T.A., Bachmann O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth and Planetary Science Letters 2014, 393:266-274. 62. Lesher C. Decoupling of chemical and isotopic exchange during magma mixing. Nature 1990, 344:235-237. 63. Li X.-H., Li Z.-X., Wingate M.T., Chung S.-L., Liu Y., Lin G.-C., Li W.-X. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: part of a Neoproterozoic mantle superplume beneath Rodinia?. Precambrian Research 2006, 146:1-15. 64. Liu Y.S., Gao S., Hu Z.C., Gao C.G., Zong K.Q., Wang D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology 2010, 51:537-571. 65. Ludwig K.R. Isoplot/Ex Version 3.00, a Geochronological Toolkit for Microsoft Excel 2003, Berkeley Geochronology Center, Berkeley, CA, USA. 66. Maas R., Nicholls I.A., Legg C. Igneous and metamorphic enclaves in the S-type Deddick granodiorite, Lachlan Fold Belt, SE Australia: petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing. Journal of Petrology 1997, 38:815-841. 67. McCulloch M.T., Rosman K.J.R., De Laeter J.R. The isotopic and elemental abundance of ytterbium in meteorites and terrestrial samples. Geochimica et Cosmochimica Acta 1977, 41:1703-1707. 68. Middlemost E.A.K. Naming materials in the magma/igneous rock system. Earth-Science Reviews 1994, 37:215-224. 69. Nalini H.A., Bilal E., Neves J.M.C. Syn-collisional peraluminous magmatism in the Rio Doce region: mineralogy, geochemistry and isotopic data of the Neoproterozoic urucum suite (eastern Minas Gerais state, Brazil). Brazilian Journal of Geology 2008, 30:120-125. 70. Ota T., Buslov M.M., Watanabe T. Metamorphic evolution of Late Precambrian eclogites and associated metabasites, Gorny Altai, Southern Russia. International Geology Review 2002, 44:837-858. 71. Ota T., Utsunomiya A., Uchio Y., Isozaki Y., Buslov M.M., Ishikawa A., Maruyama S., Kitajima K., Kaneko Y., Yamamoto H., Katayama I. Geology of the Gorny Altai subduction-accretion complex, southern Siberia: tectonic evolution of an Ediacaran-Cambrian intra-oceanic arc-trench system. Journal of Asian Earth Sciences 2007, 30:666-695. 72. Patiño Douce A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?. Geological Society, London, Special Publications 1999, 168:55-75. 73. Pearce J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 1984, 25:956-983. 74. Petford N., Gallagher K. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth and Planetary Science Letters 2001, 193:483-499. 75. Qi L., Hu J., Gregoire D.C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 2000, 51:507-513. 76. Rapp R.P., Watson E.B., Miller C.F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research 1991, 51:1-25. 77. Rapp R.P., Watson E.B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology 1995, 36:891-931. 78. Ridolfi F., Renzulli A., Puerini M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology 2010, 160:45-66. 79. Rudnick R. Growing from below. Nature 1990, 347:511-512. 80. Rudnick R.L. Making continental crust. Nature 1995, 378:571-577. 81. Rudnick R.L., Fountain D.M. Nature and composition of the continental crust: a lower crustal perspective. Review of Geophysics 1995, 33:267. 82. Safonova I.Y., Buslov M.M., Iwata K., Kokh D.A. Fragments of Vendian-Early Carboniferous oceanic crust of the Paleo-Asian Ocean in foldbelts of the Altai-Sayan region of Central Asia: geochemistry, biostratigraphy and structural setting. Gondwana Research 2004, 7:771-790. 83. Safonova I.Y., Simonov V.A., Buslov M.M., Ota T., Maruyama S. Neoproterozoic basalts of the Paleo-Asian Ocean (Kurai accretionary zone, Gorny Altai, Russia): geochemistry, petrogenesis, and geodynamics. Russian Geology and Geophysics 2008, 49:254-271. 84. Safonova I.Y., Buslov M.M., Simonov V.A., Izokh A.E., Komiya T., Kurganskaya E.V., Ohno T. Geochemistry, petrogenesis and geodynamic origin of basalts from the Katun' accretionary complex of Gorny Altai (southwestern Siberia). Russian Geology and Geophysics 2011, 52:421-442. 85. Safonova I. The Russian-Kazakh Altai orogen: an overview and main debatable issues. Geoscience Frontiers 2014, 5:537-552. 86. Schmidt M. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology 1992, 110:304-310. 87. Searle M., Cottle J., Streule M., Waters D. Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms. Geological Society of America Special Papers 2010, 472:219-233. 88. Sengör A.M.C., Natal'in B.A., Burtman V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364:299-307. 89. Simonov V., Dobretsov N., Buslov M. Boninite series in structures of the Paleo-Asian ocean. Russian Geology and Geophysics 1994, 35:182-199. 90. Sparks R.S.J., Marshall L.A. Thermal and mechanical constraints on mixing between mafic and silicic magmas. Journal of Volcanology and Geothermal Research 1986, 29:99-124. 91. Sun M., Yuan C., Xiao W., Long X., Xia X., Zhao G., Lin S., Wu F., Kröner A. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chemical Geology 2008, 247:352-383. 92. Sun M., Long X., Cai K., Jiang Y., Wang B., Yuan C., Zhao G., Xiao W., Wu F. Early Paleozoic ridge subduction in the Chinese Altai: insight from the abrupt change in zircon Hf isotopic compositions. Science in China Series D: Earth Sciences 2009, 52:1345-1358. 93. Sun S.-S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 1989, 42(1):313-345. 94. Tang G.-J., Wang Q., Wyman D.A., Li Z.-X., Zhao Z.-H., Yang Y.-H. Late Carboniferous high εNd(t)-εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: ridge-subduction-related magmatism and crustal growth. Lithos 2012, 140-141:86-102. 95. Taylor S.R., McLennan S.M. The Continental Crust: Its Composition and Evolution 1985, Blackwell. 96. Utsunomiya A., Jahn B.-M., Ota T., Safonova I.Y. A geochemical and Sr-Nd isotopic study of the Vendian greenstones from Gorny Altai, southern Siberia: implications for the tectonic setting of the formation of greenstones and the role of oceanic plateaus in accretionary orogen. Lithos 2009, 113:437-453. 97. Vernon R.H. Restite, xenoliths and microgranitoid enclaves in granites. Journal and Proceedings, Royal Society of New South Wales 1983, 116:77-103. 98. Vernon R.H. Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment. Nature 1984, 309:438-439. 99. Vladimirov A.G., Kruk N.N., Khromykh S.V., Polyansky O.P., Chervov V.V., Vladimirov V.G., Travin A.V., Babin G.A., Kuibida M.L., Khomyakov V.D. Permian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal processes. Russian Geology and Geophysics 2008, 49:468-479. 100. Wang T., Hong D.w., Jahn B.m., Tong Y., Wang Y.b., Han B.f., Wang X.x. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: implications for the tectonic evolution of an accretionary orogen. The Journal of Geology 2006, 114:735-751. 101. Wang T., Jahn B.-M., Kovach V.P., Tong Y., Hong D.-W., Han B.-F. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos 2009, 110:359-372. 102. Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F., Quadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research 1995, 19:1-23. 103. Windley B.F., Alexeiev D., Xiao W., Kröner A., Badarch G. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 2007, 164:31-47. 104. Wones D.R. Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geology 1981, 31:191-212. 105. Xia X., Sun M., Geng H., Sun Y., Wang Y., Zhao G. Quasi-simultaneous determination of U-Pb and Hf isotope compositions of zircon by excimer laser-ablation multiple-collector ICPMS. Journal of Analytical Atomic Spectrometry 2011, 26:1868-1871. 106. Xiao W., Huang B., Han C., Sun S., Li J. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Research 2010, 18:253-273. 107. Yolkin E., Sennikov N., Buslov M., Yazikov A.Y., Gratsianova R., Bakharev N. Paleogeographic reconstruction of the Western Altai-Sayan area in the Ordovician, Silurian, and Devonian and their geodynamic interpretation. Geologiya i Geofizika (Russian Geology and Geophysics) 1994, 35:118-144. 108. Yuan C., Sun M., Xiao W., Li X., Chen H., Lin S., Xia X., Long X. Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chemical Geology 2007, 242:22-39.