Инд. авторы: Чинь В., Багдассаров Н., Шацкий В.С.
Заглавие: Происхождение высокоскоростных аномалий под сибирским кратоном: свидетельство мультистадийного андерплейтинга магмы начиная с неоархея
Библ. ссылка: Чинь В., Багдассаров Н., Шацкий В.С. Происхождение высокоскоростных аномалий под сибирским кратоном: свидетельство мультистадийного андерплейтинга магмы начиная с неоархея // Геология и геофизика. - 2016. - Т.57. - № 5. - С.906-919. - ISSN 0016-7886.
Внешние системы: DOI: 10.15372/GiG20160506; РИНЦ: 26006039;
Реферат: eng: Despite the violent eruption of the Siberian Traps large igneous province at ~250 Ma, the Siberian craton has an extremely low heat flow (18-25 mW/m2) and a very thick lithosphere (300-350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high vP (>7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbros as a result of magma underplating. The high-velocity anomaly in the upper mantle ( vP = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and spinel peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.
rus: Несмотря на масштабное извержение в большой магматической провинции сибирских траппов 250 млн л.н., Сибирский кратон характеризуется чрезвычайно низким тепловым потоком (18-25 мВт/м2) и очень мощной литосферой (300-350 км), что делает его идеальным местом для изучения влияния мантийных плюмов на продолжительную стабильность кратонов. Сравнение с сейсмическими скоростями пород свидетельствует о том, что нижняя кора Сибирского кратона представлена главным образом мафическими гранулитами и могла быть достаточно неоднородной по составу. Очень высокие скорости vP (> 7.2 км/с) нижней коры могут объясняться смесью гранатовых гранулитов, двупироксеновых гранулитов и гранатового габбро, вызванных подслоенностью магм. Высокоскоростная аномалия в верхней мантии ( vP = 8.3-8.6 км/с) может интерпретироваться как результат смеси эклогитов и шпинелевых перидотитов. В сочетании с исследованиями нижнекоровых и мантийных ксенолитов мы выявили многостадийность процесса подслоенности магмы на границе кора-мантия под Сибирским кратоном, включая неоархейский рост коры и палеопротерозойское формирование Сибирского кратона под Мархинским террейном, протерозойскую коллизию вдоль Саяно-Таймырской сутурной зоны и извержение сибирских траппов в триасе под Центрально-Тунгусским бассейном. Граница Мохо является, скорее всего, границей между гранулитовой и эклогитовой фацией метаморфизма, а не химической границей, которая отделяет мафическую нижнюю кору от ультрамафитовой верхней мантии. Поэтому в результате процесса многоступенчатой подслоенности магм начиная с неоархея сейсмическая граница Мохо расположена на меньшей глубине по сравнению с петрологической границей Мохо. Такие изменения состава, вызванные магматизмом, а также уменьшение содержания воды приводят к увеличению вязкости литосферной мантии и, наконец, вызывают утолщение литосферы, вызванное активностью мантийных плюмов. Следовательно, мантийные плюмы не являются ключевым фактором деструкции кратона.
Ключевые слова: eclogites; seismic velocities; Siberian traps; Siberian Craton; скорость сейсмических волн; кратоны; литосфера; плюм; Moho;
Издано: 2016
Физ. характеристика: с.906-919
Цитирование: 1. Бузлукова Л.В., Шацкий В.С., Соболев Н.В. Особенности строения низов земной коры в районе кимберлитовой трубки Загадочная (Якутия) // Геология и геофизика, 2004, т. 45 (8), с. 992-1007. 2. Гладкочуб Д.П., Донская Т.В., Мазукабзов А.М., Скляров Е.В., Пономарчук В.А., Станевич А. М. Урикско-Ийский грабен Присаянского выступа Сибирского кратона: новые геохронологические данные и геодинамические следствия // ДАН, 2002, т. 386, № 1, с. 72-77. 3. Кинни П.Д., Гриффин Б.Дж., Хеамэн Л.М., Брахфогель Ф.Ф., Специус З.В. Определение U-Pb возрастов перовскитов и якутских кимберлитов ионно-ионным масс-спектрометрическим (SHRIMP) методом // Геология и геофизика, 1997, т. 38 (1), с. 91-99. 4. Соболев Н.В., Тейлор Л.А., Зуев В.М., Безбородов С.М., Снайдер Г.А., Соболев В.Н., Ефимова Э.С. Особенности эклогитового парагенезиса алмазов кимберлитовых трубок Мир и Удачная (Якутия) // Геология и геофизика, 1998, т. 39 (12), с. 1667-1678. 5. Шацкий В.С., Бузлукова Л.В., Ягоутц Э., Козьменко О.А., Митюхин С.И. Строение и эволюция нижней коры Далдын-Алакитского района Якутской алмазоносной провинции (по данным изучения ксенолитов) // Геология и геофизика, 2005, т. 46 (12), с. 1273-1289. 6. Artemieva I.M., Mooney W.D. Thermal thickness and evolution of Precambrian lithosphere: A global study // J. Geophys. Res., 2001, v. 106, p. 16387-16414. 7. Bascou J., Doucet L.S., Saumet S., Ionov D.A., Ashepkov I.V., Golovin A.V. Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite // Earth Planet. Sci. Lett., 2011, v. 304, № 1-2, p. 71-84. 8. Belousova E.A., Kostitsyn Y.A., Griffin W.L., Begg G.C., O’Reilly S.Y., Pearson N.J. The growth of the continental crust: Constraints from zircon Hf-isotope data // Lithos, 2010, v. 119, p. 457-466. 9. Bryan S.C., Ferrari L. Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years // GSA Bull., 2013, v. 125, p. 1053-1078. 10. Bubnov V.P., Yakovlev A.G., Aleksanova E.D., Yakovlev D.V., Berdichevsky M.N., Pushkarev P.Yu. Regional magnetotelluric explorations in Russia // Methods Geochem. Geophysics, 2007, v. 40, p. 351-367. 11. Cawood P.A., Hawkesworth C.J., Dhuime B. The continental record and the generation of continental crust // GSA Bull., 2013, v. 125, p. 14-32. 12. Cherepanova Y., Artemieva I., Thybo H., Chemia Z. Crustal structure of the Siberian craton and the West Siberian basin: An appraisal of existing seismic data // Tectonophysics, 2013, v. 209, p. 154-183. 13. Christensen N.I., Mooney W.D. Seismic velocity structure and composition of the continental crust: a global view // J. Geophys. Res., 1995, v. 100, № B6, p. 9761-9788. 14. DeBari S.M., Coleman R.G. Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska // J. Geophys. Res., 1989, v. 94, p. 4373-4391. 15. Doucet L.S., Ionov D.A., Golovin A.V. Paleoproterozoic formation age for the Siberian cratonic mantle: Hf and Nd isotope data on refractory peridotite xenoliths from the Udachnaya kimberlite // Chem. Geol., 2015, v. 391, p. 42-55. 16. Eaton D.W., Darbyshire F., Evans R.L., Grütter H., Jones A.G., Yuan X.H. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons // Lithos, 2009, v. 109, p. 1-22. 17. Ernst R.E., Buchan K.L. Large mafic magmatic events through time and links to mantle-plume heads // Mantle plumes: their identification through time / Eds. R.E. Ernst, K.L. Buchan. Geol. Soc. Amer., 2001, Special Paper 352, p. 483-575. 18. Erwin D.H. The Permo-Triassic extinction // Nature, 1994, v. 367, p. 231-236, doi: 10.1038/367231a0. 19. Foley S.F. Rejuvenation and erosion of the cratonic lithosphere // Nat. Geosci., 2008, v. 1, p. 503-510, doi:10.1038/ngeo261. 20. Fountain D.M. The Ivrea-Verbano and Strona-Ceneri zones, northern Italy: a cross section of the continental crust - new evidence from seismic velocities of rock samples // Tectonophysics, 1976, v. 33, p. 145-165. 21. Gladkochub D., Pisarevsky S., Donskaya T., Natapov L., Mazukabzov A., Stanevich A., Sklyarov E. The Siberian Craton and its evolution in terms of the Rodinia hypothesis // Episodes, 2006, v. 29, p. 169-174. 22. Griffin W.L., Ryan C.G., Kaminsky F.V., O’Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian craton // Tectonophysics, 1999, v. 310, p. 1-35. 23. Griffin W.L., O’Reilly S.Y., Abe N., Aulbach S., Davies R.M., Pearson N.J., Doyle B.J., Kivi K. The origin and evolution of Archean lithospheric mantle // Precamb. Res., 2003, v. 127, p. 19-41. 24. Griffin W.L., Natapov L.M., O’Reilly S.Y., van Achterbergh E., Cherenkova A.F., Cherenkov V.G. The Kharamai kimberlite field, Siberia: Modification of the lithospheric mantle by the Siberian Trap event // Lithos, 2005, v. 81, p. 167-187. 25. Hacker B.R., Mehl L., Kelemen P.B., Rioux M., Behn M.D., Luffi P. Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry // J. Geophys. Res., 2008, v. 113, B03204, doi:10.1029/2007JB005208. 26. Henry P. Relationship between porosity, electrical conductivity, and cation exchange capacity in Barbados wedge sediments // Proceedings of the Ocean Drilling Program, scientific results / Eds. T.H. Shipley, Y. Ogawa, P. Blum, J.M. Bahr. 1997, v. 156, p. 137-149. 27. Hirschmann M.M. Water, melting, and the deep Earth H2O cycle // Ann. Rev. Earth Planet. Sci., 2006, v. 34, p. 629-653. 28. Hirschmann M.M., Tenner T., Aubaud C., Withers A.C. Dehydration melting of nominally anhydrous mantle: the primacy of partitioning // Phys. Earth Planet. Int., 2009, v. 176, p. 54-68. 29. Hirth G., Kohlstedt D.L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere // Earth Planet. Sci. Lett., 1996, v. 144, p. 93-108. 30. Hirth G., Kohlstedt D.L. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists // Inside the subduction factory / Ed. J.E. Eiler. Amer. Geophys. Union, Washington DC, 2003, p. 83-105. 31. Ionov D.A., Prikhodko V.S., Bodinier J.L., Sobolev A.V., Weis D. Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik // Contr. Miner. Petrol., 2005, v. 149, p. 647-665. 32. Ionov D.A., Carlson R.D., Doucet L.S., Golovin A.V., Oleinikov O.B. The age and history of the lithospheric mantle of the Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Obnazhennaya kimberlite // Earth Planet. Sci. Lett., 2015a, v. 428, p. 108-119. 33. Ionov D.A., Doucet L.S., Carlson R.W., Golovin A.V., Korsakov A.V. Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite // Geochim. Cosmochim. Acta, 2015b, v. 165, p. 466-483. 34. Isley A.E., Abbott D.H. Plume-related mafic volcanism and the deposition of banded iron formation // J. Geophys. Res., 1999, v. 104, p. 15.461-15.478, doi:10.1029/1999JB900066. 35. Isley A.E., Abbott D.H. Implications of the temporal distribution of high-Mg magmas for mantle plume volcanism through time // J. Geol., 2002, v. 110, p. 141-158, doi:10.1086/338553. 36. Jacob D.E., Foley S.E. Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths // Lithos, 1999, v. 48, p. 317-336. 37. Jacob D., Jagoutz E., Lowry D., Mattey D., Kudrjavtseva G. Diamondeiferous eclogites from Siberia: Remnants of Archean oceanic crust // Geochim. Cosmochim. Acta, 1994, v. 58, p. 5191-5207. 38. Jahn B.-M., Gruan G., Capdevila R., Cornichet J., Nemchin A., Pidgeon R., Rudnik V.A. Archean crustal evolution of the Aldan Shield, Siberia: geochemical and isotopic constraints // Precamb. Res., 1998, v. 91, p. 333-336. 39. Ji S.C., Wang Q., Xia B. Handbook of seismic properties of minerals, rocks and ores. Montreal, Canada, Polytechnic International Press, 2002, 630 p. 40. Karato S. Rheology of the deep upper mantle and its implications for the preservation of the continental roots: a review // Tectonophysics, 2010, v. 481, p. 82-98. 41. Kern H., Schenk V. Elastic wave velocities in rocks from a lower crustal section in southern Calabria (Italy) // Phys. Earth Planet. Int., 1985, v. 40, p. 147-160. 42. Kern H., Burlini L., Ashchepkov I.V. Fabric-related seismic anisotropy in upper-mantle xenoliths: evidence from measurements and calculations // Phys. Earth Planet. Int., 1996, v. 95, p. 195-209. 43. Kobussen A.F., Christensen N.I., Thybo H. Constraints on seismic velocity anomalies beneath the Siberian craton from xenoliths and petrophysics // Tectonophysics, 2006, v. 425, p. 123-135. 44. Koptev A., Calais E., Burov E., Leroy S., Gerya T. Dual continental rift systems generated by plume-lithosphere interaction // Nat. Geosci., 2015, v. 8, p. 388-392, doi: 10.1038/NGEO2401. 45. Koreshkova M.Yu., Downs H., Nikitina L., Vladykin N.V., Larionov A.N., Sergeev S.A. Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia // Precamb. Res., 2009, v. 168, p. 197-212. 46. Koreshkova M.Yu., Downs H., Levsky L.K., Vladykin N.V. Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya Kimberlite Pipes, Siberia // J. Petrol., 2011, v. 52, p. 1857-1885. 47. Kuskov O.L., Kronrod V.A., Prokofyev A.A., Pavlenkova N.I. Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles // Tectonophysics, 2014, v. 615-616, p. 154-166. 48. Larin A.M., Amelin Yu.V., Neymark L.A., Krymsky R.Sh. The origin of the 1.73-1.70 Ga anorogenic Ulkan volcano-plutonic complex, Siberian Platform, Russia: inferences from geochronological, geochemical and Nd-Sr-Pb isotopic data // Ann. Academ. Brasiliana Ciencias, 1997, v. 69, p. 295-312. 49. Melnik E.A., Suvorov V.D., Pavlov E.V., Mishenkina Z.R. Seismic and density heterogeneities of lithosphere beneath Siberia: Evidence from the Craton long-range seismic profile // Polar Sci., 2015, v. 9, p. 119-129. 50. Miller D.J., Christensen N.I. Seismic signature and geochemistry of an island arc: a multidisciplinary study of the Kohistan accreted terrane, northern Pakistan // J. Geophys. Res., 1994, v. 99, p. 11623-11642. 51. Misra K.C., Anand M., Taylor L.A., Sobolev N.V. Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia // Contr. Miner. Petrol., 2004, v. 146, p. 696-714. 52. Nielsen L., Thybo H. Identification of crustal and upper mantle heterogeneity by modeling of controlled-source seismic data // Tectonophysics, 2006, v. 416, p. 209-228. 53. Nielsen L., Thybo H., Solodilov L. Seismic tomographic inversion of Russian PNE data along profile Craton // Geophys. Res. Lett., 1999, v. 26, p. 3413-3416. 54. Nikishin A.M., Sobornov K.O., Prokopiev A.V., Frolov S.V. Tectonic evolution of the Siberian Platform during the Vendian and Phanerozoic // Moscow University Geology Bull., 2010, v. 65, № 1, p. 1-16. 55. Nutman A.P., Chernyshev I.V., Baadsgaard H., Smelov A.P. The Aldan Shield of Siberia, USSR: the age of its Archaean components and evidence for widespread reworking in the mid-Proterozoic // Precamb. Res., 1992, v. 54, № 2-4, p. 195-210. 56. Pavlenkova G.A., Pavlenkova N.I. Upper mantle structure of the Northern Eurasia from peaceful nuclear explosion data // Tectonophysics, 2006, v. 416, p. 33-52. 57. Pearson D.G., Shirey S.B., Carlson R.W., Boyd F.R., Pokhilenko N.P., Shimizu N. Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism // Geochim. Cosmochim. Acta, 1995a, v. 59, № 5, p. 959-977. 58. Pearson D.G., Snyder G., Shirey S., Taylor L., Carlson R., Sobolev N. Archaean Re-Os age for Siberian eclogites and constraints on Archaean tectonics // Nature, 1995b, v. 374, p. 711-713. 59. Pearson D.G., Parman S.W., Nowell G.M. A link between large mantle melting events and continent growth seen in osmium isotopes // Nature, 2007, v. 449, p. 202-205. 60. Pisarevsky S.A., Natapov L.M., Donskaya T.V., Gladkochub D.P., Vernikovsky V.A. Proterozoic Siberia: A promontory of Rodinia // Precamb. Res., 2008, v. 160, p. 66-76. 61. Poller U., Gladkochub D., Donskaya T., Mazukabzov A., Sklyarov E., Todt W. Multistage magmatic and metamorphic evolution in the Southern Siberian Craton: Archean and Palaeoproterozoic zircon ages revealed by SHRIMP and TIMS // Precamb. Res., 2005, v. 136, p. 353-368. 62. Prodehl C., Kennett B., Artemieva I.M., Thybo H. 100 years of seismic research on the Moho // Tectonophysics, 2013, v. 609, p. 9-44. 63. Reichow M.K., Pringle M.S., Al’Mukhamedov A.I., Allen M.B., Andreichev V.L., Buslov M.M., Davies C.E., Fedoseev G.S., Fitton J.G., Inger S., Medvedev A.Ya., Mitchell C., Puchkov V.N., Safonova I.Yu., Scott R.A., Saunders A.D. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis // Earth Planet. Sci. Lett., 2009, v. 277, p. 9-20. 64. Rosen O.M., Condie K.C., Natapov L.M., Nozhkin A.D. Paleoproterozoic evolution of the Siberian craton: a preliminary assessment // Archean crustal evolution / Ed. K.C. Condie. Amsterdam, Elsevier, 1994, p. 411-459. 65. Rosen O.М., Levskii L.K., Zhuravlev D.Z., Rotman A.Ya., Spetsius Z.V., Makeev A.F., Zinchuk N. N., Manakov A.V., Serenko V.P. Palaeoproterozoic accretion in the northeast Siberian craton: isotopic dating of the Anabar collision system // Stratigr. Geol. Correl., 2006, v. 14, p. 581-601. 66. Shatsky V., Ragozin A., Zedgenizov D., Mityukhin S. Evidence for multistage evolution in a xenolith of diamond-bearing eclogite from the Udachnaya kimberlite pipe // Lithos, 2008, v. 105, p. 289-300. 67. Sobolev V.N., Taylor L.A., Snyder G.A., Sobolev N.V. Diamondifferous eclogites from the Udachnaya kimberlite pipe, Yakutia // Int. Geol. Rev., 1994, v. 36, p. 42-46. 68. Steinberger B., Torsvik T.H. Toward an explanation for the present and past locations of the poles // Geochem. Geophys. Geosystems, 2010, v. 11, № Q06W06, doi:10.1029/2009GC002889. 69. Suvorov V.D., Melnik E.A., Thybo H., Perchuc E., Parasotka B.S. Seismic velocity model of the crust and uppermost mantle around the Mirnyi kimberlite field in Siberia // Tectonophysics, 2006, v. 420, p. 167-185. 70. Thybo H., Artemieva I.M. Moho and magmatic underplating in continental lithosphere // Tectonophysics, 2013, v. 609, p. 605-619. 71. Tommasi A., Vauchex A., Ionov D.A. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia) // Earth Planet. Sci. Lett., 2008, v. 272, p. 65-77. 72. Wang Q. A review of water contents and ductile deformation mechanisms of olivine: implications for the lithosphere-asthenosphere boundary of continents // Lithos, 2010, v. 120, p. 30-41. 73. Wang Q., Ji S.C., Salisbury M., Pan M., Xia B., Xu Z.Q. Pressure dependence and anisotropy of P-wave velocities in ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt (China): implications for seismic properties of subducted slabs and origin of mantle reflections // Tectonophysics, 2005, v. 398, p. 67-99. 74. Wang Q., Bagdassarov N., Ji S. The Moho as a transition zone: A revisit from seismic and electrical properties of minerals and rocks // Tectonophysics, 2013, v. 609, p. 395-422. 75. Wang Q., Bagdassarov N., Xia Q., Zhu B. Water contents and electrical conductivity of peridotite xenoliths from the North China Craton: Implications for water distribution in the upper mantle // Lithos, 2014, v. 189, p. 105-126. 76. Wignall P.B. Large igneous provinces and mass extinctions // Earth Sci. Rev., 2001, v. 53, p. 1-33, doi: 10.1016/S0012-8252(00)00037-4. 77. Winter J.D. An introduction to igneous and metamorphic petrology. New Jersey, Prentice-Hall Inc., 697 p. 78. Xu Y.G. Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: evidence timing and mechanism // Phys. Chem. Earth (A), 2001, v. 26, p. 747-757. 79. Yamamoto H. Contrasting metamorphic P-T-time paths of the Kohistan granulites and tectonics of the western Himalayas // J. Geol. Soc. (London, U.K.), 1993, v. 150, p. 843-856. 80. Yang X.Z. Origin of high electrical conductivity in the lower continental crust: A review // Surv. Geophys., 2011, v. 32, p. 875-903. 81. Yegorova T., Pavlenkova G. Structure of the upper mantle of Northern Eurasia from 2D density modeling on seismic profiles with peaceful nuclear explosions // Tectonophysics, 2014, v. 627, p. 57-71. 82. Yoshino T. Laboratory electrical conductivity measurement of mantle minerals // Surv. Geophys., 2010, v. 31, p. 163-206. 83. Zhao G., Cawood P.A., Wilde S.A., Sun M. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent // Earth Sci. Rev., 2002, v. 59, p. 125-162.