Инд. авторы: Faoro R.., Tonelli M.., Isaenko L.I., Tarasova A.Y., Pashkov V.M.
Заглавие: Spectroscopy in the 1.4 and 1.8-μm wavelength regions of kpb2cl5 single crystals doped with trivalent thulium
Библ. ссылка: Faoro R., Tonelli M., Isaenko L.I., Tarasova A.Y., Pashkov V.M. Spectroscopy in the 1.4 and 1.8-μm wavelength regions of kpb2cl5 single crystals doped with trivalent thulium // Journal of Luminescence. - 2016. - Vol.180. - P.140-145. - ISSN 0022-2313. - EISSN 1872-7883.
Внешние системы: DOI: 10.1016/j.jlumin.2016.07.059; РИНЦ: 27137781; SCOPUS: 2-s2.0-84983425860; WoS: 000386314300021;
Реферат: eng: A KPb2Cl5 crystal doped with trivalent Thulium ions has been grown using the Bridgman technique. We report the spectroscopic characterization of the Tm3+:KPb2Cl5 single crystal. Polarized absorption, continuous and dynamical fluorescence in the near infrared region are reported and discussed taking in account the possible defects that affect the crystals. The emission cross sections of the transition H43→F43 (1.4 micron) and F43→H63 (1.8 micron) are reported. The results suggest this crystal as a promising emitting material in the near-infrared region.
Ключевые слова: optical properties; crystal growth; Optical materials; Luminescence vs temperature;
Издано: 2016
Физ. характеристика: с.140-145
Цитирование: 1. [1] Honea, E., Beach, R., Sutton, S., Speth, J., Mitchell, S., Skidmore, J., Emanuel, M., Payne, S., 115-W Tm:YAG diode-pumped solid-state laser. IEEE J. Quantum Electron. 33:9 (1997), 1592–1600, 10.1109/3.622641. 2. [2] A. Dergachev, K. Wall, P.F. Moulton, A CW side-pumped Tm:YLF laser, in: Advanced Solid-State Lasers, Optical Society of America, 2002, p. WA1. 3. [3] Galzerano, G., Cornacchia, F., Parisi, D., Toncelli, A., Tonelli, M., Laporta, P., Widely tunable 1.94-μm Tm:BaY2F8 laser. Opt. Lett. 30:8 (2005), 854–856, 10.1364/OL.30.000854. 4. [4] Isaenko, L., Yelisseyev, A., Tkachuk, A., Ivanova, S., Vatnik, S., Merkulov, A., Payne, S., Page, R., Nostrand, M., New laser crystals based on KPb2 Cl5 for IR region. Mater. Sci. Eng.: B 81:1–3 (2001), 188–190, 10.1016/S0921-5107(00)00735-2. 5. [5] A. Bluiett, E. Pinkney, E. Brown, U. Hmmerich, P. Amedzake, S. Trivedi, J. Zavada, Energy transfer processes in doubly doped Yb, Pr:KPb2Cl5 for mid-infrared laser applications, Materials Science and Engineering: B, 146(1–3), 2008, pp. 110–113, eMRS 2007, Symposium C, Rare Earth Ion Doping for Photonics: Materials, Mechanisms and Devices. 〈 http://dx.doi.org/10.1016/j.mseb.2007.07.091〉. 6. [6] Tkachuk, A., Ivanova, S., Isaenko, L., Yelisseyev, A., Joubert, M., Guyot, Y., Payne, S., Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5Er3+: 1. optical spectra and relaxation of excited states of the erbium ion in potassium-lead double chloride crystals. Opt. Spectrosc. 95 (2003), 722–740, 10.1134/1.1628721. 7. [7] Ferrier, A., Velázquez, M., Doualan, J.-L., Moncorgé, R., Energy level structure and excited-state absorption properties of Er3+-doped KPb2Cl5. J. Opt. Soc. Am. B 24:9 (2007), 2526–2536, 10.1364/JOSAB.24.002526. 8. [8] M.C. Nostrand, R.H. Page, S.A. Payne, W.F. Krupke, P.G. Schunemann, L.I. Isaenko, Spectroscopic data for infrared transitions in CaGa2S4:Dy3+ and KPb2Cl5:Dy3+, in: Advanced Solid State Lasers, Optical Society of America, 1998, p. CS23. 9. [9] A. Tkachuk, S. Ivanova, L. Isaenko, A. Yelisseyev, V. Pustovarov, M.-F. Joubert, Y. Guyot, V. Gapontsev, Emission peculiarities of TR3+-doped KPb2Cl5 laser crystals under selective direct, upconversion and excitonic/host excitation of impurity centers, in: Advanced Solid-State Photonics (TOPS), Optical Society of America, 2005, p. 69. 10. [10] Nitsch, K., Dušek, M., Nikl, M., Polák, K., Rodová, M., Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties. Prog. Cryst. Growth Charact. Mater. 30:1 (1995), 1–22, 10.1016/0960-8974(95)00012-V. 11. [11] Jenkins, N., Bowman, S., O׳Connor, S., Searles, S., Ganem, J., Spectroscopic characterization of Er-doped KPb2Cl5 laser crystals. Opt. Mater. 22:4 (2003), 311–320, 10.1016/S0925-3467(02)00290-2. 12. [12] Gruber, J.B., Yow, R.M., Nijjar, A.S., Russell, C.C. III, Sardar, D.K., Zandi, B., Burger, A., Roy, U.N., Modeling the crystal-field splitting of energy levels of Er3+(4f11) in charge-compensated sites of KPb2Cl5. J. Appl. Phys., 100(4), 2006, 043108, 10.1063/1.2244416. 13. [13] Velàzquez, M., Marucco, J.-F., Mounaix, P., Peérez, O., Ferrier, A., Moncorgé, R., Segregation and twinning in the rare-earth doped KPb2Cl5 laser crystals. Cryst. Growth Des. 9:4 (2009), 1949–1955, 10.1021/cg801252t. 14. [14] Isaenko, L., Yelisseyev, A., Tkachuk, A., Ivanova, S., New monocrystals with low phonon energy for Mid-IR lasers. Ebrahim-Zadeh, M., Sorokina, I.T., (eds.) Mid-Infrared Coherent Sources and Applications, NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, Springer, Netherlands, 3–65, 10.1007/978-1-4020-6463-0_1. 15. [15] Bluiett, A.G., Condon, N.J., O׳Connor, S., Bowman, S.R., Logie, M., Ganem, J., Thulium-sensitized neodymium in KPb2Cl5 for mid-infrared laser development. J. Opt. Soc. Am. B 22:10 (2005), 2250–2256, 10.1364/JOSAB.22.002250. 16. [16] Cascales, C., Fernández, J., Balda, R., Investigation of site-selective symmetries of Eu3+ ions in KPb2Cl5 by using optical spectroscopy. Opt. Express 13:6 (2005), 2141–2152, 10.1364/OPEX.13.002141. 17. [17] Ganem, J., Crawford, J., Schmidt, P., Jenkins, N.W., Bowman, S.R., Thulium cross-relaxation in a low phonon energy crystalline host. Phys. Rev. B, 66, 2002, 245101, 10.1103/PhysRevB.66.245101. 18. [18] E. Brown, E. Kumi-Barimah, U. Hömmerich, A. Bluiett, S. Trivedi, Material purification, crystal growth, and spectroscopy of tm-doped KPb2Cl5 and KPb2Br5 for 2μm photonic applications, J. Cryst. Growth, vol. 393, 2014, pp. 159–162, in: The 19th American Conference on Crystal Growth and Epitaxy in conjunction with the 16th US Biennial Workshop on Organometallic Vapor Phase Epitaxy. 〈 http://dx.doi.org/10.1016/j.jcrysgro.2013.09.033〉. 19. [19] Howse, D., Logie, M., Bluiett, A.G., O׳Connor, S., Condon, N.J., Ganem, J., Bowman, S.R., Optically-pumped mid-IR phosphor using Tm3+-sensitized Pr3+-doped KPb2Cl5. J. Opt. Soc. Am. B 27:11 (2010), 2384–2392, 10.1364/JOSAB.27.002384. 20. [20] Sumida, D.S., Fan, T.Y., Effect of radiation trapping on fluorescence lifetime and emission across section measurements in solid-state laser media. Opt. Lett. 19:17 (1994), 1343–1345, 10.1364/OL.19.001343. 21. [21] Cornacchia, F., Parisi, D., Tonelli, M., Spectroscopy and diode-pumped laser experiments of LiLuF:Tm crystals. IEEE J. Quantum Electron. 44:11 (2008), 1076–1082, 10.1109/JQE.2008.2000923. 22. [22] Aull, B., Jenssen, H., Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J. Quantum Electron. 18:5 (1982), 925–930, 10.1109/JQE.1982.1071611. 23. [23] Braud, A., Girard, S., Doualan, J., Moncorge, R., Spectroscopy and fluorescence dynamics of (Tm3+, Tb3+) and (Tm3+, Eu3+) doped LiYF4 single crystals for 1.5-μm laser operation. IEEE J. Quantum Electron. 34:11 (1998), 2246–2255, 10.1109/3.726622. 24. [24] Cornacchia, F., Toncelli, A., Tonelli, M., Lasers with fluoride crystals: research and development. Progress. Quantum Electron. 33:2–4 (2009), 61–109, 10.1016/j.pquantelec.2009.04.001. 25. [25] Payne, S., Chase, L., Smith, L.K., Kway, W.L., Krupke, W.F., Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+. IEEE J. Quantum Electron. 28:11 (1992), 2619–2630, 10.1109/3.161321.