Инд. авторы: Koulakov I., Kasatkina E., Vasilevsky A., Shapiro N.M., Jaupart C., El K.S., Al-arifi N., Smirnov S.
Заглавие: The feeder system of the toba supervolcano from the slab to the shallow reservoir
Библ. ссылка: Koulakov I., Kasatkina E., Vasilevsky A., Shapiro N.M., Jaupart C., El K.S., Al-arifi N., Smirnov S. The feeder system of the toba supervolcano from the slab to the shallow reservoir // Nature Communications. - 2016. - Vol.7. - Art.12228. - ISSN 2041-1723.
Внешние системы: DOI: 10.1038/ncomms12228; РИНЦ: 27084539; SCOPUS: 2-s2.0-84978920120; WoS: 000380813100001;
Реферат: eng: The Toba Caldera has been the site of several large explosive eruptions in the recent geological past, including the world's largest Pleistocene eruption 74,000 years ago. The major cause of this particular behaviour may be the subduction of the fluid-rich Investigator Fracture Zone directly beneath the continental crust of Sumatra and possible tear of the slab. Here we show a new seismic tomography model, which clearly reveals a complex multilevel plumbing system beneath Toba. Large amounts of volatiles originate in the subducting slab at a depth of ∼150 km, migrate upward and cause active melting in the mantle wedge. The volatile-rich basic magmas accumulate at the base of the crust in a ∼50,000 km 3 reservoir. The overheated volatiles continue ascending through the crust and cause melting of the upper crust rocks. This leads to the formation of a shallow crustal reservoir that is directly responsible for the supereruptions.
Ключевые слова: continental crust; explosive volcanism; fracture zone; magma chamber; Pleistocene; seismic tomography; subduction; Toba Caldera; Sunda Isles; Sumatra; North Sumatra; Greater Sunda Islands; volcano; velocity; temperature sensitivity; melting point; longitude; latitude; heating; gravity; earthquake; Article; algorithm; volcano; volcanic eruption; volatile element; upper crust; caldera;
Издано: 2016
Физ. характеристика: 12228
Цитирование: 1. Chesner, C. A., Rose, W. I., Deino, A. & Drake, R. Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified. Geology 19, 200-203 (1991). 2. Chesner, C. A. The Toba Caldera complex. Quater. Int. 258, 5-18 (2012). 3. Costa, A., Smith, V. C., Macedonio, G. & Matthews, N. E. The magnitude and impact of the Youngest Toba Tuff super-eruption. Front. Earth Sci. 2, 16 (2014). 4. Rampino, M. R. & Self, S. Volcanic winter and accelerated glaciation following the Toba supereruption. Nature 359, 50-52 (1992). 5. Gathorne-Hardy, F. J. & Harcourt-Smith, W. E. H. The super-eruption of Toba, did it cause a human bottleneck? J. Hum. Evol. 45, 227-230 (2003). 6. Chesner, C. A. & Luhr, J. F. A melt inclusion study of the Toba Tuffs, Sumatra, Indonesia. J. Volcanol. Geotherm. Res. 197, 259-278 (2010). 7. Curray, J. R. Tectonics and history of the Andaman Sea region. J. Asian Earth Sci. 25, 187-232 (2005). 8. Cole, J. W., Milner, D. M. & Spinks, K. D. Calderas and caldera structures: a review. Earth Sci. Rev. 69, 1-26 (2005). 9. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008). 10. Kopp, H. et al. Lower slope morphology of the Sumatra trench system. Basin Res. 20, 519-529 (2008). 11. Förste, C. et al. in: EGU General Assembly Conference Abstracts. 16, p. 3707 (2014). 12. Bassett, D. & Watts, A. B. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief. Geochem. Geophys. Geosyst. 16, 1508-1540 (2015). 13. Fauzi, McCaffrey, R., Wark, D., Sunaryo & Prih Haryadi, P. Y. Lateral variation in slab orientation beneath Toba Caldera, northern Sumatra. Geophys. Res. Lett. 23, 443-446 (1996). 14. Luehr, B.-G. et al. Fluid ascent and magma storage beneath Gunung Merapi revealed by multi-scale seismic imaging. J. Volcanol. Geotherm. Res. 261, 7-19 (2013). 15. Koulakov, I. & Sobolev, S. V. A tomographic image of Indian lithosphere break-off beneath the Pamir Hindukush region. Geophys. J. Int. 164, 425-440 (2006). 16. Pesicek, J. D. et al. Complex slab subduction beneath northern Sumatra. Geophys. Res. Lett. 35, L20303 (2008). 17. Lange, D. et al. The fine structure of the subducted investigator fracture zone in western Sumatra as seen by local seismicity. Earth Planet. Sci. Lett. 298, 47-56 (2010). 18. Masturyono et al. Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained by three-dimensional P wave velocities, seismicity, and gravity data. Geochem. Geophys. Geosyst. 2, 1014 (2001). 19. Koulakov, I., Yudistira, T., Luehr, B. G. & Wandono, P. S velocity and Vp/Vs ratio beneath the Toba caldera complex (northern Sumatra) from local earthquake tomography. Geophys. J. Int. 177, 1121-1139 (2009). 20. Stankiewicz, J., Ryberg, T., Haberland, C., Fauzi & Natawidjaja, D. Lake Toba volcano magma chamber imaged by ambient seismic noise tomography. Geophys. Res. Lett. 37, L17306 (2010). 21. Jaxybulatov, K. et al. Seismic anisotropy reveals a large magmatic sill complex below the Toba caldera. Science 346, 617-619 (2014). 22. Sakaguchi, K., Gilbert, H. & Zandt, G. Converted wave imaging of the Toba Caldera, Indonesia. Geophys. Res. Lett 33, L20305 (2006). 23. Havskov, J. & Ottemoller, L. SeisAn earthquake analysis software. Seis. Res. Lett. 70, 532-534 (1999). 24. Koulakov, I. LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms. Bull. Seismol. Soc. Am. 99, 194-214 (2009). 25. Koulakov, I. et al. Feeding volcanoes of the Kluchevskoy group from the results of local earthquake tomography. Geophys. Res. Lett. 38, L09305 (2011). 26. Maruyama, S. & Okamoto, K. Water transportation from the subducting slab into the mantle transition zone. Gondwava Res. 11, 148-165 (2007). 27. Koulakov, I. Studying deep sources of volcanism using multiscale seismic tomography. J. Volcanol. Geotherm. Res. 257, 205-226 (2013). 28. Asch, G. et al. in The Andes 443-457 (Springer, 2006). 29. Peacoc, S. M. Fluid processes in subduction zone. Science 248, 329-337 (1990). 30. Huang, H. H. et al. The Yellowstone magmatic system from the mantle plume to the upper crust. Science 348, 773-776 (2015). 31. Shapiro, N. M. & Koulakov, I. Probing the underbelly of a supervolcano. Science 348, 758-759 (2015). 32. International Seismological Centre, On-line Bulletin http://www.isc.ac.uk, Internatl. Seis. Cent., Thatcham, United Kingdom (2013). 33. Laske, G., Masters, G. & Reif, C. CRUST2.0: a new global crustal model at 2-2 degrees. Institute of Geophysics and Planetary Physics, The University of California, San Diego, website http://mahi.ucsd. edu/Gabi/rem. dir/crust/crust2.html (2001). 34. Koulakov, I. High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of worldwide traveltime data. J. Geophys. Res. 116, B04301 (2011). 35. Jaxybulatov, K., Koulakov, I. & Dobretsov, N. L. Segmentation of the Izu-Bonin and Mariana plates based on the analysis of the Benioff seismicity distribution and regional tomography results. Solid Earth 4, 1-15 (2013). 36. Koulakov, I. Out-of-network events can be of great importance for improving results of local earthquake tomography. Bull. Seismol. Soc. Am. 99, 2556-2563 (2009). 37. Um, J. & Thurber, C. H. A fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am 77, 972-986 (1987). 38. Paige, C. C. & Saunders, M. A. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Transact. Math. Software (TOMS) 8, 43-71 (1982).