Инд. авторы: Shokina N.Y., Khakimzyanov G.S.
Заглавие: Numerical modelling of surface waves in the framework of shallow water model
Библ. ссылка: Shokina N.Y., Khakimzyanov G.S. Numerical modelling of surface waves in the framework of shallow water model // Proceedings of VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS-2016): Crete Island, Greece, 5–10 June 2016. - 2016. - Vol.1. - P.1104-1126. - ISBN: 978-618-82844-0-1.
Внешние системы: РИНЦ: 27578346; SCOPUS: 2-s2.0-84995520577;
Реферат: eng: An improved adaptive grid method is considered for the numerical solution of the problems on propagation and run-up of surface waves, described by the one-dimensional shallow water model. The modified algorithm for the realization of the explicit predictor-corrector scheme is presented, which is based on the new way of computation of the right-hand side of the shallow water equations. A new method for choosing the scheme parameters on the basis of the analysis of the differential approximation is suggested that guarantees the satisfaction of the TVD-property for the improved predictor-corrector scheme. The presented method for construction of different conservative schemes on moving grids is based on an appropriate choice of the scheme parameters for the predictor-corrector scheme, which represents the canonical form of the two-layer explicit schemes for the shallow water equations. The improved difference boundary conditions are obtained at the moving waterfront point using the known analytical solutions of the shallow water equations in the vicinity of a water-land boundary. These boundary conditions approximate the analytical solutions with a higher accuracy than the conditions used in the earlier works. The numerical results for the improved adaptive grid method are presented.
Ключевые слова: Water waves; Shallow water equations; Run-up; Predictor-corrector schemes; Non-linear shallow water equations; Finite difference scheme; Differential approximations; Adaptive-grid method; Adaptive grids; Surface waves; One dimensional; Numerical methods; Nonlinear equations; Finite difference method; Equations of motion; Computational methods; Boundary conditions; Surface waves; Run-up; Nonlinear shallow water equations; Finite-difference scheme; Adaptive grid; Numerical models;
Издано: 2016
Физ. характеристика: с.1104-1126
Конференция: Название: VII European Congress on Computational Methods in Applied Sciences and Engineering
Аббревиатура: ECCOMAS-2016
Город: Crete Island
Страна: Greece
Даты проведения: 2016-06-05 - 2016-06-10
Ссылка: https://www.eccomas2016.org/
Цитирование: 1. Yu. I. Shokin, Z. I. Fedotova, G. S. Khakimzyanov, Hierarchy of nonlinear models of the hydrodynamics of long surface waves. Doklady Physics, 60(5), 168-172, 2015. 2. E. Toro, P. Garćia-Navarro, Godunov-type methods for free-surface shallow flows: A review. Journal of Hydraulic Research, 45(6), 736-751, 2007. 3. G. S. Khakimzyanov, N. Yu. Shokina, Adaptive grid method for one-dimensional shallow water equations. Computational Technologies, 18(3), 54-79, 2013. (in Russ.) 4. M. E. Vazquez-Cendon, Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. Journal of Computational Physics, 148(2), 497-526, 1999. 5. N. E. Voltsinger, E. N. Pelinovskii, K. A. Klevannyi, The long-wave dynamics of the coastal zone. Leningrad: Gidrometeoizdat, 1989. (in Russ.) 6. R. J. LeVeque, numerical methods for conservation laws. Berlin: Birkhäuser Verlag, 1992. 7. E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Berlin: Springer-Verlag, Springer-Verlag, 2009. 8. Lynch D. R. Gray W. G., Finite element simulation of flow in deforming regions. Journal of Computational Physics, 36, 135-153, 1980. 9. J. Hou, Q. Liang, H. Zhang, R. Hinkelmann, An efficient unstructured MUSCL scheme for solving the 2D shallow water equations. Environmental Modelling & Software, 66, 131-152, 2015. 10. J. Hou, Q. Liang,. Simons, R. Hinkelmann, A stable 2D unstructured shallow flow model for simulations of wetting and drying over rough terrains. Computers & Fluids, 82, 132-147, 2013. 11. A. Duran, F. Marche, Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms. Computers & Fluids, 101, 88-104, 2014. 12. S. W. Funke, C. C. Pain, S. C. Kramer, M. D. Piggott, A wetting and drying algorithm with a combined pressure/free-surface formulation for non-hydrostatic models. Advances in Water Resources, 34(11), 1483-1495, 2011. 13. T. Kärnä, B. de Brye, O. Gourgue, J. Lambrechts, R. Comblen, V. Legat, E. Deleersnijder, A fully implicit wetting-drying method for DG-FEM shallow water models, with an application to the Scheldt Estuary. Computer Methods in Applied Mechanics and Engineering, 200(5-8), 509-524, 2011. 14. Y. Li, F. Raichlen, Non-breaking and breaking solitary wave run-up. Journal of Fluid Mechanics, 456, 295-318, 2002. 15. E. T. Flouri, N. Kalligeris, G. Alexandrakis, N. A. Kampanis, C. E. Synolakis, Application of a finite difference computational model to the simulation of earthquake generated tsunamis. Applied Numerical Mathematics, 67, 111-125, 2013. 16. Yu. I. Shokin, S. A. Beisel, A. D. Rychkov, L. B. Chubarov, Numerical simulation of the tsunami runup on the coast using the method of large particles. Mathematical Models and Computer Simulations, 7(4), 339-348, 2015. 17. A. A. Samarskii, The theory of difference schemes. USA: Marcel Dekker, Inc., 2001. 18. G. S. Khakimzyanov, N. Yu. Shokina, Some notes on monotonicity preserving schemes. Computational Technologies, 17(2), 78-98, 2012. (in Russ.) 19. N. Yu. Shokina, To the problem of construction of difference schemes on movable grids. Russian Journal of Numerical Analysis and Mathematical Modelling, 27(6), 603-626, 2012. 20. S. P. Bautin, S. L. Deryabin, A. F. Sommer, G. S. Khakimzyanov, N. Yu. Shokina, Use of analytic solutions in the statement of difference boundary conditions on a movable shoreline. Russian Journal of Numerical Analysis and Mathematical Modelling, 26(4), 353-377, 2011. 21. C. E. Synolakis, The runup of solitary waves. Journal of Fluid Mechanics, 185, 523-545, 1987. 22. S. A. Beizel, N. Yu. Shokina, G. S. Khakimzyanov, L. B. Chubarov, O. A. Kovyrkina, V. V. Ostapenko, On some numerical algorithms for computation of tsunami runup in the framework of shallow water model. I. Computational Technologies, 19(1), 40-62, 2014. (in Russ.) 23. O. I. Gusev, N. Yu. Shokina, V. A. Kutergin, G. S. Khakimzyanov, Numerical modelling of surface waves generated by underwater landslide in a reservoir. Computational Technologies, 18(5), 74-90, 2013. (in Russ.) 24. Yu. I. Shokin, S. A. Beisel, O. I. Gusev, G. S. Khakimzyanov, L. B. Chubarov, N. Yu. Shokina, Numerical modelling of dispersive waves generated by landslide motion. Bulletin of the South Ural State University, 7(1), 121-133, 2014. (in Russ.) 25. B. L. Rozhdestvenskiy, N. N. Yanenko, Systems of quasilinear equations and their application to gas dynamics. Moscow: Nauka, 1978. (in Russ.) 26. G. Pedersen, B. Gjevik, Run-up of solitary waves. Journal of Fluid Mechanics, 135, 283-299, 1983. 27. M. J. Cooker, P. D. Weidman, D. S. Bale, Reflection of a high-amplitude solitary wave at a vertical wall. Journal of Fluid Mechanics, 342, 141-158, 1997. 28. C. E. Synolakis, E. N. Bernard, V. V. Titov, U. Kanoglu, F. I. Gonzalez, Validation and verification of tsunami numerical models. Pure and Applied Geophysics, 165, 2197-2228, 2008. 29. J. Horrillo, S. T. Grilli, D. Nicolsky, V. Roeber, J. Zhang, Performance benchmarking tsunami models for NTHMP's inundation mapping activities. Pure and Applied Geophysics, 170(3-4), 1333-1359, 2015.