Инд. авторы: Fedotova Z.I., Gusev O.I., Khakimzyanov G.S.
Заглавие: New algorithm for numerical simulation of surface waves within the framework of the full nonlinear dispersive model
Библ. ссылка: Fedotova Z.I., Gusev O.I., Khakimzyanov G.S. New algorithm for numerical simulation of surface waves within the framework of the full nonlinear dispersive model // Proceedings of VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS-2016): Crete Island, Greece, 5–10 June 2016. - 2016. - Vol.1. - P.1093-1103. - ISBN: 978-618-82844-0-1.
Внешние системы: РИНЦ: 27590242; SCOPUS: 2-s2.0-84995466851;
Реферат: eng: The paper describes a new numerical method for modeling long waves with dispersion on a rotating attracting sphere. The algorithm is presented in the form of a finite-difference scheme of predictor-corrector, so that at each step the inhomogeneous hyperbolic system similar to classical shallow water equations with a right-hand side, and the uniformly elliptic equation are solved alternately. Necessary conditions for the stability of the method are obtained and the dispersion properties are investigated.
Ключевые слова: Dispersion; Finite difference method; Nonlinear dispersive equations on a sphere; Numerical algorithm; Stability; Nonlinear equations; Uniformly elliptic equations; Shallow water equations; Predictor corrector; Numerical algorithms; Nonlinear dispersive equations; Finite difference scheme; Dispersion properties; Surface waves; Numerical methods; Finite difference method; Equations of motion; Dispersion (waves); Convergence of numerical methods; Computational methods; Surface waves; Nonlinear dispersive;
Издано: 2016
Физ. характеристика: с.1093-1103
Конференция: Название: VII European Congress on Computational Methods in Applied Sciences and Engineering
Аббревиатура: ECCOMAS-2016
Город: Crete Island
Страна: Greece
Даты проведения: 2016-06-05 - 2016-06-10
Ссылка: https://www.eccomas2016.org/
Цитирование: 1. Z. I. Fedotova, G. S. Khakimzyanov, Nonlinear-dispersive shallow water equations on a rotating sphere. Russian Journal of Numerical Analysis and Mathematical Modelling, 25(1), 15-26, 2010. 2. J. T. Kirby, F. Shi, B. Tehranirad, J. C. Harris, S. T. Grilli, Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling, 62, 39-55, 2013. 3. Yu. I. Shokin, Z. I. Fedotova G. S. Khakimzyanov, Hierarchy of nonlinear models of the hydrodynamics of long surface waves. Doklady Physics, 60(5), 224-228, 2015. 4. Z. I. Fedotova, G. S. Khakimzyanov, D. Dutykh, Energy equation for certain approximate models of long-wave hydrodynamics. Russian Journal of Numerical Analysis and Mathematical Modelling, 29(3), 167-178, 2014. 5. Z. I. Fedotova, G. S. Khakimzyanov, O. I. Gusev, History of the development and analysis of numerical methods for solving nonlinear dispersive equations of hydrodynamics. I. One-dimensional models problems. Computational Technologies, 20(5), 120-156, 2015 (In Russian). 6. G. S. Khakimzyanov, O. I. Gusev, S. A. Beisel, L. B. Chubarov, N. Yu. Shokina, Simulation of tsunami waves generated by submarine landslides in the Black Sea. Russian Journal of Numerical Analysis and Mathematical Modelling, 30(4), 227-237, 2015. 7. Z. I. Fedotova, G. S. Khakimzyanov, Nonlinear-dispersive shallow water equations on a rotating sphere and conservation laws. Journal of Applied Mechanics and Technical Physics, 55(3), 404-416, 2014. 8. Z. I. Fedotova, G. S. Khakimzyanov, Full nonlinear dispersion model of shallow water equations on a rotating sphere. Journal of Applied Mechanics and Technical Physics, 52(6), 865-876, 2011. 9. F. Lovholt, G. Pedersen, G. Gisler, Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research, 113, C09026, 2008. 10. F. Lovholt, G. Pedersen, S. Glimsdal, Coupling of dispersive tsunami propagation and shallow water coastal response. Open Oceanography Journal, 4, 71-82, 2010. 11. S. Glimsdal, G. K. Pedersen, C. B. Harbitz, F. Lovholt, Dispersion of tsunamis: does it really matter? Natural Hazards and Earth System Science, 13, 1507-1526, 2013. 12. D. H. Peregrine, Long waves on a beach. Journal of Fluid Mechanics, 27, 815-827, 1967. 13. R. C. Ertekin, W. C. Webster, J. V. Wehausen, Waves caused by a moving disturbance in a shallow channel of finite width. Journal of Fluid Mechanics, 169, 275-292, 1986. 14. Z. I. Fedotova, G. S. Khakimzyanov, Shallow water equations on a movable bottom. Russian Journal of Numerical Analysis and Mathematical Modelling, 24(1), 31-42, 2009. 15. J. C. Eilbeck, G. R. McGuire, Numerical study of the regularized long-wave equations 1: Numerical methods. Journal of Computational Physics, 19, 43-57, 1975. 16. O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(6), 618-638, 1993. 17. G. Wei, J. T. Kirby, Time-dependent numerical code for extended Boussinesq equations. Journal of Waterway, Port, Coastal, and Ocean Engineering, 121(5), 251-261, 1995. 18. G. Wei, J. T. Kirby, S. T. Grilli, R. Subramanya, A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294, 71-92, 1995. 19. L. A. Kompaniets, Analysis of difference algoritms for nonlinear dispersive shallow water models. Russian Journal of Numerical Analysis and Mathematical Modelling, 11(3), 205-222, 1996. 20. Z. I. Fedotova, V. Yu. Pashkova, Methods of construction and the analysis of difference schemes for nonlinear dispersive models of wave hydrodynamics. Russian Journal of Numerical Analysis and Mathematical Modelling, 12(2), 127-149, 1997. 21. O. I. Gusev, G. S. Khakimzyanov, Numerical simulation of long surface waves on a rotating sphere within the framework of the full nonlinear dispersive model. Computational Technologies, 20(3), 3-32, 2015 (In Russian).