Инд. авторы: Grigor'ev Y.N., Ershov I.V.
Заглавие: Linear stability of Couette flow of vibrationally non-equilibrium gas
Библ. ссылка: Grigor'ev Y.N., Ershov I.V. Linear stability of Couette flow of vibrationally non-equilibrium gas // AIP Conference Proceedings. - 2016. - Vol.1770. - Art.030043. - ISSN 0094-243X.
Внешние системы: DOI: 10.1063/1.4963985; РИНЦ: 27589660; SCOPUS: 2-s2.0-84994171888; WoS: 000392692200062;
Реферат: eng: Stability of the supersonic plane Couette flow of a perfect gas and of a vibrationally excited gas is studied within the framework of the linear theory. In both cases two variants are studied. When the transport coeffcients are taken as con-stant, and when they are dependent on the flow static temperature. The Satherland's viscosity law was used as temperature dependence of the shear viscosity. The thermal conductivity coeffcients caused by the translational, rotational and vibra-tional motions of gas molecules are determined by the Eucken's relations. Detailed comparison of the characteristics of the stability of the acoustic modes I and II for both viscosity models is carried out for a perfect gas. It is shown that the 'viscous' stratification significantly increases flow stability as compared with the case of the constant viscosity model. It is obtained that characteristic features of development of viscous disturbances noted for the Sutherland's model are conserved for more simple model of the constant viscosity. The dissipative effect of the excitation of the vibrational mode is preserved in the case of the temperature dependence of the transport coeffcients. The relative decrease in growth rates of viscous modes I and II at the vibrational excitation is practically the same for both viscosity models. The increase in the critical Reynolds number is approximately 12 % in both cases. © 2016 Author(s).
Ключевые слова: EXCITED DIATOMIC GAS;
Издано: 2016
Физ. характеристика: 030043
Конференция: Название: 18th International Conference on the Methods of Aerophysical Research
Аббревиатура: ICMAR-2016
Город: Perm
Страна: Russia
Даты проведения: 2016-06-27 - 2016-07-03
Ссылка: http://scitation.aip.org/content/aip/proceeding/aipcp/1770
Цитирование: 1. P. W. Duck, G. Erlebacher, and M. Y. Hussaini, J. Fluid Mech. 258, 131-165 (1994). 10.1017/S0022112094003277 2. S. Hu and X. Zhong, Phys. Fluids, 10, 709-729 (1998). 10.1063/1.869596 3. M. Malik, J. Dey, and M. Alam, Phys. Rev. E., 77, 036322 (2008). 10.1103/PhysRevE.77.036322 4. Yu. N. Grigor'ev and I. V. Ershov, J. Appl. Mech. Tech. Phys. 55, 258-269 (2014). 10.1134/S0021894414020084 5. Yu. N. Grigor'ev and I. V. Ershov, J. Appl. Mech. Tech. Phys. 57, 247-257 (2016). 10.1134/S0021894416020073 6. E. A. Nagnibeda and E. V. Kustova, Nonequilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes (Springer, Berlin, 2009). 7. Yu. N. Grigor'ev and I. V. Ershov, Stability of Flows of Relaxing Molecular Gases [in Russian] (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2012). 8. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases (North Holland Publ. Comp., Amsterdam, London, 1972). 9. G. W. Kaye and T. H. Laby, Tables of Physical and Chemical Constants (Longmans, Green & Co., London, New York, Toronto, 1958). 10. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics (Springer, Berlin, 1988). 11. L. N. Trefethen, Spectral Methods in Matlab (Soc. for Indus. and Appl. Math., Philadelphia, 2000). 12. Yu. N. Grigor'ev and I. V. Yershov, J. Appl. Math. Mech. 75, 410-418 (2011). 10.1016/j.jappmathmech.2011.09.006 13. Yu. N. Grigor'ev and I. V. Ershov, J. Appl. Mech. Tech. Phys. 53, 517-531 (2012). 10.1134/S0021894412040062 14. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961). 15. C. B. Moler and G. W. Stewart, SIAM J. Numer. Anal. 10, 241-256 (1973). 10.1137/0710024 16. C. S. Morawetz, J. Rat. Mech. Anal. 1, 79-603 (1952).