Инд. авторы: | Perego A.M., Tarasov N., Churkin D.V., Turitsyn S.K., Staliunas K. |
Заглавие: | Dissipative parametric modulation instability and pattern formation in nonlinear optical systems |
Библ. ссылка: | Perego A.M., Tarasov N., Churkin D.V., Turitsyn S.K., Staliunas K. Dissipative parametric modulation instability and pattern formation in nonlinear optical systems // Proceedings of SPIE - The International Society for Optical Engineering. - 2016. - Vol.9894. - Art.98940A. - ISSN 0277-786X. |
Внешние системы: | DOI: 10.1117/12.2225595; РИНЦ: 27572020; SCOPUS: 2-s2.0-84985961187; WoS: 000381694500005; |
Реферат: | eng: We present the essential features of the dissipative parametric instability, in the universal complex GinzburgLandau equation. Dissipative parametric instability is excited through a parametric modulation of frequency dependent losses in a zig-zag fashion in the spectral domain. Such damping is introduced respectively for spectral components in the +AF and in the AF region in alternating fashion, where F can represent wavenumber or temporal frequency depending on the applications. Such a spectral modulation can destabilize the homogeneous stationary solution of the system leading to growth of spectral sidebands and to the consequent pattern formation: both stable and unstable patterns in one- and in two-dimensional systems can be excited. The dissipative parametric instability provides an useful and interesting tool for the control of pattern formation in nonlinear optical systems with potentially interesting applications in technological applications, like the design of mode locked lasers emitting pulse trains with tunable repetition rate; but it could also find realizations in nanophotonics circuits or in dissipative polaritonic Bose-Einstein condensates. |
Ключевые слова: | mode-locking; pattern formation; Nonlinear instabilities; |
Издано: | 2016 |
Конференция: | Название: Conference on Nonlinear Optics and its Applications IV Город: Brussels Страна: Belgium Даты проведения: 2016-04-03 - 2016-04-06 Ссылка: http://proceedings.spiedigitallibrary.org/volume.aspx?volumeid=17639 |
Цитирование: | 1. Cross, M. C. and Hohenberg, P. C., "Pattern formation outside of equilibrium," Rev. Mod. Phys. 65, 851 (1993). 2. Tlidi, M., Staliunas, K., Panajotov, K., Vladimirov, A. G., and Clerc, M. G., "Localized structures in dissipative media: from optics to plant ecology," Phil. Trans. R. Soc. A 372, 2027 (2014). 3. Staliunas, K. and Sánchez-Morcillo, V. J., [Transverse patterns in nonlinear optical resonators], Springer, Berlin (2003). 4. Kumar, S., Herrero, R., Botey, M., and Staliunas, K., "Taming of modulation instability by spatio-temporal modulation of the potential," Scientific Reports 5, 13268 (2015). 5. Ahmed, W. W., Kumar, S., Herrero, R., Botey, M., Radziunas, M., and Staliunas, K., "Stabilization of at-mirror vertical-external-cavity surface-emitting lasers by spatiotemporal modulation of the pump profile," Phys. Rev. A 92, 043829 (2015). 6. Kumar, S., Herrero, R., Botey, M., and Staliunas, K., "Suppression of modulation instability in broad area semiconductor ampliérs," Opt. Lett. 39, 5598-5601 (2014). 7. Smith, N. and Doran, N. J., "Modulational instabilities in fibers with periodic dispersion management," Opt. Lett. 21, 570-572 (1996). 8. Abdullaev, F. K., Darmanyan, S. A., Bischo, S., and Srensen, M. P., "Modulational instability of electro-magnetic waves in media with varying nonlinearity," J. Opt. Soc. Am. B 14, 27-33 (1997). 9. Faraday, M., "On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating elastic surfaces," Phil. Trans. R. Soc. London 121, 299-318 (1831). 10. Staliunas, K., Longhi, S., and de Valcárcel, G. J., "Faraday patterns in bose-einstein condensates," Phys. Rev. Lett. 89, 210406 (2002). 11. Staliunas, K., Hang, C., and Konotop, V. V., "Parametric patterns in optical fiber ring nonlinear resonators," Phys. Rev. A 88, 023846 (2013). 12. Conforti, M., Mussot, A., Kudlinski, A., and Trillo, S., "Modulational instability in dispersion oscillating fiber ring cavities," Opt. Lett. 39, 4200-4203 (2014). 13. Perego, A. M., Tarasov, N., Churkin, D. V., Turitsyn, S. K., and Staliunas, K., "Pattern generation by dissipative parametric instability," Phys. Rev. Lett. 116, 028701 (2016). 14. Aranson, I. and Kramer, L., "The world of the complex ginzburg-landau equation," Rev. Mod. Phys. 74, 99 (2002). 15. Carusotto, I. and Ciuti, C., "Quantum uids of light," Rev. Mod. Phys. 85, 299 (2013). |