Инд. авторы: | Grebenev V.N., Oberlack M., Megrabov A.G., Grishkov A.N. |
Заглавие: | Symmetry transformations of an ideal steady fluid flow determined by a potential function |
Библ. ссылка: | Grebenev V.N., Oberlack M., Megrabov A.G., Grishkov A.N. Symmetry transformations of an ideal steady fluid flow determined by a potential function // Journal of Mathematical Physics. - 2016. - Vol.57. - Iss. 10. - Art.103506. - ISSN 0022-2488. |
Внешние системы: | DOI: 10.1063/1.4965224; SCOPUS: 2-s2.0-84994235452; WoS: 000387587600036; |
Реферат: | eng: First, we consider a transformation Ξ of 3D trajectories (fluid particle paths) of inviscid steady flows using the dual stream function approach for the (local) representation of velocity fields u→(x, y, z) = Δ λ × Δ μ. This enables to derive the equation governing the deformation of trajectories by the gradient field ξ→ = Δ μ along the surface (x, y, z) = λ0. In fact, Ξ is a symmetry transformation and it looks formally like the filament motion which preserves the curvature. Then, we investigate in detail a fine structure of a Lie algebra associated with an extension of the transformation Ξ which creates a visual appearance of sliding stream surfaces λ(x, y, z) = λ0 along itself. The minimal set of generating differential invariants is found. This set consists of a single invariant which coincides with a Hamiltonian function.
|
Ключевые слова: | VORTEX FILAMENT; |
Издано: | 2016 |
Физ. характеристика: | 103506 |