Инд. авторы: Chekhovskoy I.S., Rubenchik A.M., Shtyrina O.V., Fedoruk M.P., Turitsyn S.K.
Заглавие: Nonlinear combining and compression in multicore fibers
Библ. ссылка: Chekhovskoy I.S., Rubenchik A.M., Shtyrina O.V., Fedoruk M.P., Turitsyn S.K. Nonlinear combining and compression in multicore fibers // Physical Review A - Atomic, Molecular, and Optical Physics. - 2016. - Vol.94. - Iss. 4. - Art.043848. - ISSN 1050-2947. - EISSN 1094-1622.
Внешние системы: DOI: 10.1103/PhysRevA.94.043848; РИНЦ: 27573739; SCOPUS: 2-s2.0-84992730350; WoS: 000390069700007;
Реферат: eng: We demonstrate numerically light-pulse combining and pulse compression using wave-collapse (self-focusing) energy-localization dynamics in a continuous-discrete nonlinear system, as implemented in a multicore fiber (MCF) using one-dimensional (1D) and 2D core distribution designs. Large-scale numerical simulations were performed to determine the conditions of the most efficient coherent combining and compression of pulses injected into the considered MCFs. We demonstrate the possibility of combining in a single core 90% of the total energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. A pulse compression factor of about 720 can be obtained with a 19-core ring MCF. © 2016 American Physical Society.
Ключевые слова: Pulse compression; nocv1; Multicore fibers (MCF); Multicore fiber; Hexagonal lattice; Energy localization; Continuous-discrete; Compression of pulse; Compression factor; Coherent combining; Physics; Mathematical models;
Издано: 2016
Физ. характеристика: 043848
Цитирование: 1. S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, 1979), paper WB1. 2. P. J. Winzer, IEEE Photonics Technol. Lett. 23, 851 (2011). IPTLEL 1041-1135 10.1109/LPT.2011.2140103 3. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, IEEE Commun. Mag. 50, S31 (2012). ICOMD9 0163-6804 10.1109/MCOM.2012.6146483 4. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, Opt. Express 19, 16576 (2011). OPEXFF 1094-4087 10.1364/OE.19.016576 5. J. M. Fini, B. Zhu, T. F. Taunay, M. F. Yan, and K. S. Abedin, Opt. Express 20, 949 (2012). OPEXFF 1094-4087 10.1364/OE.20.000949 6. D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013). 1749-4885 10.1038/nphoton.2013.94 7. R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, Nat. Photonics 8, 865 (2014). 1749-4885 10.1038/nphoton.2014.243 8. K. Igarashi, T. Tsuntani, and I. Morita, in Optical Communication (ECOC) (Systematic Paris Region Systems and ICT Cluster, 2014), pp. 1-3. 9. T. A. Eriksson, R. S. Luís, B. J. Puttnam, J. M. D. Mendinueta, P. A. Andrekson, M. Karlsson, Y. Awaji, N. Wada, and E. Agrell, Opt. Express 23, 14569 (2015). OPEXFF 1094-4087 10.1364/OE.23.014569 10. K. Saitoh and S. Matsuo, J. Lightwave Technol. 34, 55 (2016). JLTEDG 0733-8724 10.1109/JLT.2015.2466444 11. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010). JOBPDE 0740-3224 10.1364/JOSAB.27.000B63 12. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, 5th ed. (Academic Press, New York, 2003). 13. S. K. Turitsyn, A. M. Rubenchik, M. P. Fedoruk, and E. Tkachenko, Phys. Rev. A 86, 031804 (2012). PLRAAN 1050-2947 10.1103/PhysRevA.86.031804 14. C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, and O. Bang, Opt. Lett. 36, 2596 (2011). OPLEDP 0146-9592 10.1364/OL.36.002596 15. S. Mumtaz, R. Essiambre, and G. Agrawal, IEEE Photonics Technol. Lett. 24, 1574 (2012). IPTLEL 1041-1135 10.1109/LPT.2012.2207713 16. A. B. Aceves, G. G. Luther, C. De Angelis, A. M. Rubenchik, and S. K. Turitsyn, Phys. Rev. Lett. 75, 73 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.75.73 17. T. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005). IJSQEN 1077-260X 10.1109/JSTQE.2005.850241 18. V. E. Zakharov and E. A. Kuznetsov, Phys. Usp. 55, 535 (2012). PHUSEY 1063-7869 10.3367/UFNe.0182.201206a.0569 19. A. M. Rubenchik, I. S. Chekhovskoy, M. P. Fedoruk, O. V. Shtyrina, and S. K. Turitsyn, Opt. Lett. 40, 721 (2015). OPLEDP 0146-9592 10.1364/OL.40.000721 20. S. Mumtaz, R. Essiambre, and G. Agrawal, J. Lightwave Technol. 31, 398 (2013). JLTEDG 0733-8724 10.1109/JLT.2012.2231401 21. S. Mumtaz, G. P. Agrawal, and R.-J. Essiambre, in Frontiers in Optics 2012/Laser Science XXVIII (Optical Society of America, Washington, DC, 2012), p. FW1D.2. 22. A. B. Aceves, O. V. Shtyrina, A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, Phys. Rev. A 91, 033810 (2015). PLRAAN 1050-2947 10.1103/PhysRevA.91.033810 23. E. A. Kuznetsov, J. J. Rasmussen, K. Rypdal, and S. K. Turitsyn, Phys. D (Amsterdam, Neth.) 87, 273 (1995). PDNPDT 0167-2789 10.1016/0167-2789(95)00150-3 24. S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, Phys. Rep. 521, 135 (2012). PRPLCM 0370-1573 10.1016/j.physrep.2012.09.004 25. N. Higham, SIAM J. Matrix Anal. Appl. 26, 1179 (2005). SJMAEL 0895-4798 10.1137/04061101X 26. K. Hizanidis, S. Droulias, I. Tsopelas, N. K. Efremidis, and D. N. Christodoulides, Int. J. Bifurcation Chaos 16, 1739 (2006). IJBEE4 0218-1274 10.1142/S0218127406015647 27. S. K. Turitsyn, Phys. Rev. E 47, R13 (1993). 1063-651X 10.1103/PhysRevE.47.R13