Инд. авторы: Lisachev P.D., Pustyl'nyak V.O., Shtark M.B.
Заглавие: Regulation of S100B expression in long-term potentiation
Библ. ссылка: Lisachev P.D., Pustyl'nyak V.O., Shtark M.B. Regulation of S100B expression in long-term potentiation // Neuroscience and Behavioral Physiology. - 2016. - Vol.46. - Iss. 3. - P.312-318. - ISSN 0097-0549. - EISSN 1573-899X.
Внешние системы: DOI: 10.1007/s11055-016-0235-8; РИНЦ: 26831484; SCOPUS: 2-s2.0-84955314318;
Реферат: eng: The role of intracellular regulatory cascades in inducing the expression of S100B during the formation of long-term post-tetanic potentiation (LTP) in field CA1 was studied in hippocampal slices from rats. Activation of transcription factor p53 (a positive regulator of S100B transcription) using nutlin-3 increased the basal level of S100B mRNA to 151% of control, which was significantly lower than its content in tetanized slices (280%). Thus, p53 cannot be the only transcription factor regulating S100B expression in LTP. KN-93, an inhibitor of Ca2+/calmodulin-dependent kinases (CaMK), completely blocked the increase in the S100B mRNA level after tetanization, while its inactive analog KN-92 had no effect on S100B expression. K-252a, an inhibitor of CaMKII and receptor tyrosine kinases, significantly suppressed S100B expression in LTP, while inhibition of MAPK p38 or RSK2 produced moderate decreases and inhibition of MEK1 had no effect on the quantity of S100B mRNA. Thus, calmodulin kinases play a key role in inducing S100B expression in LTP.
Ключевые слова: S100b; p53; long-term potentiation; Hippocampal slices; Ca2+/calmodulin-dependent kinases; CA1;
Издано: 2016
Физ. характеристика: с.312-318
Цитирование: 1. P. D. Lisachev, V. O. Pustyl’nyak, M. B. Shtark, and O. I. Epshtein, “Induction of expression of the S100B gene on long-term potentiation in hippocampal field CA1 depends on the activity of NMDA-type receptors,” Byull. Eksperim. Biol. Med., 154, No. 10, 481–484 (2012). 2. D. R. Alessi, A. Cuenda, P. Cohn, et al., “PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase in vitro and in vivo,” J. Biol. Chem., 270, No. 46, 27489–27494 (1995). 3. T. Arnauld, S. Vankoningsloo, P. Renard, et al., “CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation,” EMBO J., 21, No. 1–2, 53–63 (2002). 4. J. Bain, L. Plater, M. Elliott, et al., “The selectivity of protein kinase inhibitors: a further update,” Biochem. J., 408, No. 3, 297–315 (2007). 5. M. M. Berg, D. W. Sternberg, L. F. Parada, and M. V. Chao, “K-252a inhibits nerve growth factor-induced trk proto-oncogene tyrosine phosphorylation and kinase activity,” J. Biol. Chem., 267, No. 1, 13–16 (1992). 6. S. Chawla, P. Vanhoutte, F. J. Arnold, et al., “Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5,” J. Neurochem., 85, 151–159 (2003). 7. Y. Y. Cho, Z. He, Y. Zhang, et al., “The p53 protein is a novel substrate of ribosomal S6 kinase 2 and a critical intermediary for ribosomal S6 kinase 2 and histone H3 interaction,” Cancer Res., 65, 3596–3603 (2005). 8. J. C. Condon, V. Pezzi, B. M. Drummond, et al., “Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase,” Endocrinology, 143, No. 9, 3651–3657 (2002). 9. A. L. Craig, J. A. Chrystal, J. A. Fraser, et al., “The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members,” Mol. Cell. Biol.,27, 3542–3555 (2007). 10. R. Donato, B. R. Cannon, G. Sorci, et al., “Functions of S100 Proteins,” Curr. Mol. Med., 13, No. 1, 24–57 (2013). 11. R. Donato, G. Sorci, F. Riuzzi, et al., “S100B’s double life: intracellular regulator and extracellular signal,” Biochim. Biophys. Acta, 1793, No. 6, 1008–1022 (2009). 12. D. Fomina-Yadlin, S. Kubicek, D. Walpita, et al., “Small-molecule inducers of insulin expression in pancreatic alpha-cells,” Proc. Natl. Acad. Sci. USA, 107, No. 34, 15099–15104 (2010). 13. L. Gao, L. A. Blair, and J. Marshall, “CaMKII-independent effects of KN93 and its inactive analog KN92: reversible inhibition of L-type calcium channels,” Biochem. Biophys. Res. Commun., 345, No. 4, 1606–1610 (2006). 14. V. M. Golubovskaya, “Targeting FAK in human cancer: from finding to first clinical trials,” Front. Biosci., 19, 687–706 (2014). 15. A. M. Gonzalez-Guerrico, J. Meshki, L. Xiao, et al., “Molecular mechanisms of protein kinase C-induced apoptosis in prostate cancer cells,” J. Biochem. Mol. Biol., 38, No. 6, 639–645 (2005). 16. Y. Hashimoto, T. Nakayama, T. Teramoto, et al., “Potent and preferential inhibition of Ca2+/calmodulin-dependent protein kinase II by K252a and its derivative, KT5926,” Biochem. Biophys. Res. Commun., 181, No. 1, 423–429 (1991). 17. C. Huang, W. Y. Ma, A. Maxiner, et al., “p38 kinase mediates UVinduced phosphorylation of p53 protein at serine 389,” J. Biol. Chem., 274, 12229–12235 (1999). 18. H. Kase, K. Iwahashi, S. Nakanishi, et al., “K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases,” Biochem. Biophys. Res. Commun., 142, No. 2, 436–440 (1987). 19. J. Lin, Q. Yang, Z. Yan, et al., “Inhibiting S100B restores p53 levels in primary malignant melanoma cancer cells,” J. Biol. Chem., 279, No. 32, 34072–34077 (2004). 20. P. D. Lisachev, M. B. Shtark, O. O. Sokolova, et al., “A Comparison of the dynamics of S100B, S100A1, and S100A6 mRNA expression in hippocampal CA1 area of rats during long-term potentiation and after low-frequency stimulation,” Cardiovasc. Psychiatry Neurol., publ. online, doi: 10.1155/2010/720958 (2010). 21. J. C. Madera and E. S. Levine, “Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission,” J. Neurophysiol., 100, 3175–3184 (2008). 22. G. Martiny-Baron, M. G. Kazanietz, H. Mischak, et al., “Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976,” J. Biol. Chem., 268, No. 13, 9194–9197 (1993). 23. A. C. Maroney, L. Lipfert, M. E. Forbes, et al., “K-252a induces tyrosine phosphorylation of the focal adhesion kinase and neurite outgrowth in human neuroblastoma SH-SY5Y cells,” J. Neurochem., 64, No. 2, 540–549 (1995). 24. B. Mellström, M. Savignac, R. Gomez-Villafuertes, and J. R. Naranjo, “Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models,” Physiol. Rev., 88, No. 2, 421–449 (2008). 25. E. Miyamoto, “Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus,” J. Pharmacol. Sci., 100, 433–442 (2006). 26. S. Nakanishi, K. Yamada, H. Kase, et al., “K-252a, a novel microbial product, inhibits smooth muscle myosin light chain kinase,” J. Biol. Chem., 263, No. 13, 6215–6219 (1988). 27. G. Nayak and G. M. Cooper, “p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase-Akt-GSK3 signaling,” Cell Death Dis., e400 (2012). 28. H. Nishiyama, T. Knopfel, S. Endo, and S. Itohara, “Glial protein S100B modulates long-term neuronal synaptic plasticity,” Proc. Natl. Acad. Sci. USA, 99, 4037–4042 (2002). 29. V. Parpura, V. Grubišić, and A. Verkhratsky, “Ca2+ sources for the exocytotic release of glutamate from astrocytes,” Biochim. Biophys. Acta, 1813, 984–991 (2011). 30. G. Perea and A. Araque, “GLIA modulates synaptic transmission,” Brain Res. Rev., 63, 93–102 (2010). 31. V. O. Pustylnyak, P. D. Lisachev, M. B. Shtark, and O. I. Epstein, “Regulation of S100B gene in rat hippocampal CA1 area during long term potentiation,” Brain Res., 1394, 33–39 (2011). 32. M. Rothermundt, J. N. Ahn, and S. Jorgens, “S100B in schizophrenia: an update,” Gen. Physiol. Biophys., F76–F81 (2009). 33. C. Qin, T. Nguyen, J. Stewart, et al., “Estrogen up-regulation of p53 gene expression in MCF-7 breast cancer cells is mediated by calmodulin kinase IV-dependent activation of a nuclear factor KB/CCAATbinding transcription factor-1 complex,” Mol. Endocrinol., 16, No. 8, 1793–1809 (2002). 34. S. Sakatani, A. Seto-Ohshima, Y. Shinohara, et al., “Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gamma oscillations in vivo,” J. Neurosci., 28, No. 43, 10928–10936 (2008). 35. J. M. Schmitt, E. S. Guire, T. Saneyoshi, and T. R. Soderling, “Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation,” J. Neurosci., 25, No. 5, 1281–1290 (2005). 36. M. L. Schroeter, H. Abdul-Khaliq, J. Sache, et al., “Mood disorders are glial disorders: evidence from in vivo studies,” Cardiovasc. Psych. Neurol., doi.org/10.1155/2010/780645 (2010). 37. G. Sorci, R. Bianchi, F. Riuzzi, et al., “S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond,” Cardiovasc. Psych. Neurol., doi.org/10.1155/2010/656481 (2010). 38. M. Sumi, K. Kiuchi, T. Ishikawa, et al., “The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells,” Biochem. Biophys. Res. Commun., 181, No. 3, 968–975 (1991). 39. K. Takeda and H. Ichijo, “Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system,” Genes Cells, 7, 1099–1111 (2002). 40. L. T. Vassilev, B. T. Vu, B. Graves, et al., “In vivo activation of the p53 pathway by small-molecule antagonists of MDM2,” Science, 303, 844–848 (2004). 41. G. A. Wayman, H. Tokumitsu, M. A. Davare, and T. R. Soderling, “Analysis of CaM-kinase signaling in cells,” Cell Calcium, 50, No. 1, 1–8 (2011). 42. S. Yano, H. Tokumitsu, and T. R. Soderling, “Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway,” Nature, 396, 584–587 (1998). 43. T. Zarubin and J. Han, “Activation and signaling of the p38 MAP kinase pathway,” Cell Res., 15, No. 1, 11–18 (2005). 44. F. Zheng, Y. Luo, and H. Wang, “Regulation of BDNF-mediated transcription of immediate early gene Arc by intracellular calcium and calmodulin,” J. Neurosci. Res., 878, No. 2, 380–392 (2009).