Инд. авторы: | Grebenev V.N., Griffin A., Medvedev S.B., Nazarenko S.V. |
Заглавие: | Steady states in Leith's model of turbulence |
Библ. ссылка: | Grebenev V.N., Griffin A., Medvedev S.B., Nazarenko S.V. Steady states in Leith's model of turbulence // Journal of Physics A: Mathematical and Theoretical. - 2016. - Vol.49. - Iss. 36. - P.5501-5528. - ISSN 1751-8113. - EISSN 1751-8121. |
Внешние системы: | DOI: 10.1088/1751-8113/49/36/365501; РИНЦ: 27146419; SCOPUS: 2-s2.0-84984704932; WoS: 000383512000009; |
Реферат: | eng: We present a comprehensive study and full classification of the stationary solutions in Leith's model of turbulence with a generalised viscosity. Three typical types of boundary value problems are considered: Problems 1 and 2 with a finite positive value of the spectrum at the left (right) and zero at the right (left) boundaries of a wave number range, and Problem 3 with finite positive values of the spectrum at both boundaries. Settings of these problems and analysis of existence of their solutions are based on a phase-space analysis of orbits of the underlying dynamical system. One of the two fixed points of the underlying dynamical system is found to correspond to a 'sharp front' where the energy flux and the spectrum vanish at the same wave number. The other fixed point corresponds to the only exact power-law solution - the so-called dissipative scaling solution. The roles of the Kolmogorov, dissipative and thermodynamic scaling, as well as of sharp front solutions, are discussed. © 2016 IOP Publishing Ltd.
|
Ключевые слова: | stationary solutions; solvability of boundary value problems; Leith model of turbulence; bottleneck phenomenon; |
Издано: | 2016 |
Физ. характеристика: | с.5501-5528 |
Цитирование: | 1. Leith C 1967 Diffusion approximation to inertial energy transfer in isotropic turbulence Phys. Fluids 10 1409
2. Connaughton C and Nazarenko S 2004 Warm cascade and anomalous scaling in a diffusion model of turbulence Phys. Rev. Lett. 92 044501-6
3. Connaughton C and Nazarenko S 2004 A model equation for turbulence arXiv:physics/0304044
4. Cichowlas C et al 2005 Effective dissipation and turbulence in spectrally truncated Euler flows Phys. Rev. Lett. 95 264502
5. Lvov V S, Nazarenko S V and Rudenko O 2007 Bottleneck crossover between classical and quantum superfluid turbulence Phys. Rev. B 76 024520
6. Falkovich G 1994 Bottleneck phenomenon in developed turbulence Physics 6 1411
7. Grebenev V N, Nazarenko S V, Medvedev S B, Schwab I V and Chirkunov Y A 2014 Self-similar solution in Leith model of turbulence: anomalous power law and asymptotic analysis J. Phys. A: Math. Theor. 47 025501
8. Chirkunov Y A, Nazarenko S V, Medvedev S B and Grebenev V N 2014 Invariant solutions for the nonlinear diffusion model of turbulence J. Phys. A: Math. Theor. 47 185501
9. Samarskii A A, Galaktionov V A, Kurdyumov S P and Mikhailov A D 1995 Blow-up in Quasilinear Parabolic Equation (Berlin: Walter de Gruyter) p 533
10. Lvov V S, Nazarenko S V and Volovik G E 2004 Energy spectra of developed superfluid turbulence J. Exper. Theor. Phys. Lett. 80 479-83
11. Thalabard S, Nazarenko S V, Galtier S and Medvedev S B 2015 Anomalous spectral laws in differential models of turbulence J. Phys. A: Math. Theor. 48 285501
12. Galtier S, Nazarenko S V, Newell A C and Pouquet A 2000 A weak turbulence theory for incompressible magnetohydrodynamics J. Plasma Phys. 63 447-88
|