Инд. авторы: Kharenko D.S., Bednyakova A.E., Podivilov E.V., Fedoruk M.P., Apolonski A.A., Babin S.A.
Заглавие: Cascaded generation of coherent Raman dissipative solitons
Библ. ссылка: Kharenko D.S., Bednyakova A.E., Podivilov E.V., Fedoruk M.P., Apolonski A.A., Babin S.A. Cascaded generation of coherent Raman dissipative solitons // Optics Letters. - 2016. - Vol.41. - Iss. 1. - P.175-178. - ISSN 0146-9592. - EISSN 1539-4794.
Внешние системы: DOI: 10.1364/OL.41.000175; РИНЦ: 27583611; PubMed: 26696187; SCOPUS: 2-s2.0-84994049786; WoS: 000380908300003;
Реферат: eng: The cascaded generation of a conventional dissipative soliton (at 1020 nm) together with Raman dissipative solitons of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity is demonstrated experimentally and numerically. With sinusoidal (soft) spectral filtering, the generated solitons are mutually coherent at a high degree and compressible down to 300 fs. Numerical simulation shows that an even higher degree of coherence and shorter pulses could be achieved with step-like (hard) spectral filtering. The approach can be extended toward a high-order coherent Raman dissipative soliton source offering numerous applications such as frequency comb generation, pulse synthesis, biomedical imaging, and the generation of a coherent mid-infrared supercontinuum. (C) 2015 Optical Society of America.
Ключевые слова: OSCILLATOR; PHOTONIC CRYSTAL; ALL-FIBER; FIBER LASER; SIMULATIONS; PULSES;
Издано: 2016
Физ. характеристика: с.175-178
Цитирование: 1. P. Grelu and N. N. Akhmediev, Nat. Photonics 6, 84 (2012). 2. W. H. Renninger and F. W. Wise, Fiber Lasers, O. G. Okhotnikov, ed. (Wiley, 2012), p. 97. 3. S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. A. Apolonski, Nat. Commun. 5, 4653 (2014). 4. D. S. Kharenko, A. E. Bednyakova, E. V. Podivilov, M. P. Fedoruk, A. A. Apolonski, and S. A. Babin, Opt. Express 23, 1857 (2015). 5. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, Opt. Lett. 28, 1891 (2003). 6. C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, Opt. Express 18, 8680 (2010). 7. A. Chamorovskiy, A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, Opt. Express 18, 23872 (2010). 8. C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, Opt. Lett. 36, 3996 (2011). 9. D. Churin, J. Olson, R. A. Norwood, N. Peyghambarian, and K. Kieu, Opt. Lett. 40, 2529 (2015). 10. D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, Opt. Lett. 37, 4104 (2012). 11. K. Ozgören and F. O. Ilday, Opt. Lett. 35, 1296 (2010). 12. E. A. Zlobina, D. S. Kharenko, S. I. Kablukov, and S. A. Babin, Opt. Express 23, 16589 (2015). 13. E. Treacy, IEEE J. Quantum Electron. 5, 454 (1969). 14. M. Bellini and T. W. Hänsch, Opt. Lett. 25, 1049 (2000). 15. J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'shea, R. Trebino, S. Coen, and R. Windeler, Opt. Express 10, 1215 (2002). 16. J. Dudley and S. Coen, IEEE J. Sel. Top. Quantum Electron. 8, 651 (2002). 17. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, Nat. Photonics 9, 721 (2015).