Инд. авторы: Shokin Y.I., Rychkov A.D., Khakimzyanov G.S., Chubarov L.B.
Заглавие: A combined computational algorithm for solving the problem of long surface waves runup on the shore
Библ. ссылка: Shokin Y.I., Rychkov A.D., Khakimzyanov G.S., Chubarov L.B. A combined computational algorithm for solving the problem of long surface waves runup on the shore // Russian Journal of Numerical Analysis and Mathematical Modelling. - 2016. - Vol.31. - Iss. 4. - P.217-227. - ISSN 0927-6467. - EISSN 1569-3988.
Внешние системы: DOI: 10.1515/rnam-2016-0022; РИНЦ: 27138108; SCOPUS: 2-s2.0-84983516279; WoS: 000380760600004;
Реферат: eng: In the present paper we study features and abilities of the combined TVD+SPH method relative to problems of numerical simulation of long waves runup on a shore within the shallow water theory. The results obtained by this method are compared to analytic solutions and to the data of laboratory experiments. Examples of successful application of the TVD+SPH method are presented for the case of study of runup processes for weakly nonlinear and strongly nonlinear waves, and also for N-waves. © 2016 Walter de Gruyter GmbH, Berlin/Boston 2016.
Ключевые слова: Surface waves; Weakly non-linear; Strongly nonlinear; Shallow waters; Shallow water theory; N-waves; Laboratory experiments; Computational algorithm; Analytic solution; Numerical models; Numerical methods; Computation theory; Algorithms; Surface waves; shallow water; runup on the coast; numerical modelling; N-waves; Water waves;
Издано: 2016
Физ. характеристика: с.217-227
Цитирование: 1. F. Alcrudo and P. Garcia-Navarro, A high-resolution Godunov-type scheme in finite volumes for the 2D shallow water equations. Int. J. Numer. Methods Fluids 16 (1993), 489-505. 2. K. Anastaious and C. T. Chan, Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. Int. J. Numer. Methods Fluids 24 (1997), 1225-1245. 3. S. P. Bautin, S. L. Deryabin, A. F. Sommer, G. S. Khakimzyanov, and N. Yu. Shokina, Use of analytic solutions in the statement of difference boundary conditions on a movable shoreline. Russ. J. Numer. Anal. Math. Modelling 26 (2011), No. 4, 353-377. 4. S. A. Beizel, N. Yu. Shokina, G. S. Khakimzyanov, L. B. Chubarov, O. A. Kovyrkina, and V. V. Ostapenko, On some numerical algorithms for computation of tsunami runup in the framework of shallow water model. I. Comp. Technol. 19 (2014), No. 1, 40-62. 5. Y.-S. Cho, M. J. Briggs, U. Kanoglu, C. E. Synolakis, and P. L.-F. Liu, Runup of solitary waves on a circular island. J. Fluid Mech. 302 (1995), 259-285. 6. L. B. Chubarov, A. D. Rychkov, G. S. Khakimzyanov, and Yu. I. Shokin, On numerical methods for solving runup problems. Comparative analysis of numerical algorithms and numerical results. In: Proc. VII European Congr. on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016). Crete Island, Greece, 5-10 June 2016 (Eds. M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris). URL: https:eccomas2016.org/proceedings. 7. F. I. Gonzalez, R. J. LeVeque, P. Chamberlain, B. Hirai, J. Varkovitzky, and D. L. George, (USGS) Validation of the GeoClaw Model. NTHMP MMS Tsunami Inundation Model Validation Workshop. GeoClaw Tsunami Modeling Group Univ. of Washington. URL: http://depts.washington.edu/clawpack/links/nthmp-benchmarks/geoclaw-results.pdf 8. V. K. Gusiakov, Residual displacements on the surface of an elastic half space. In: Conditionally Well-Posed Problems of Mathematical Physics in the Interpretation of Geophysical Observations. VTs SO AN, Novosibirsk, 1978, pp. 23-51. 9. S. S. Hrapov, A. V. Khoperskov, N. M. Kuzmin, A. V. Pisarev, and I. A. Kobelev, A numerical scheme for simulating the dynamics of surface water on the basis of the combined SPH-TVD approach. Comp. Methods Program. Tech. 12 (2011), 282-297. 10. G. Khakimzyanov, N. Yu. Shokina, D. Dutykh, and D. Mitsotakis, A new runup algorithm based on local high-order analytic expansions. J. Comp. Appl. Math. 298 (2016), 82-96. 11. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Monographs and Surveys in Pure and Applied Mathematics Vol. 118. Chapman & Hall/CRC, Boca Raton, FL, USA, 2001. 12. M. De Lefe, D. Le Touze, and B. Alessandrini, SPH modeling of shallow-water coastal flows. J. Hydraulic Research 48 (2010), Extra Issue, 118-125. 13. J. J. Monaghan, Simulating free surface flows with SPH. J. Comp. Phys. 110 (1994), No. 2, 399-406. 14. National Tsunami Hazard Mitigation Program. Tsunami Benchmark Tests of GeoClaw. URL: http://depts.washington.edu/clawpack/links/nthmp-benchmarks/ 15. National Tsunami Hazard Mitigation Program. Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. Boulder: U.S. Department of Commerce/ NO-AA/NTHMP; (NOAA Special Report), 2012. 16. Y. Okada, Surface deformation due to shear and tensile faults in the half space. Bulletin Seis. Soc. Amer. 75 (1985), 1135-1154. 17. A. Rodin, I. Didenkulova, and E. Pelinovsky, Numerical study for runup of breaking waves of different polarities on a sloping beach. In: Extreme Ocean Waves (Eds. E. Pelinovsky and C. Kharif). Springer Int. Publ., Switzerland, 2016. 18. Yu. I. Shokin, S. A. Beisel, A. D. Rychkov, and L. B. Chubarov, Numerical simulation of the tsunami runup on the coast using the method of large particles. Math. Models Comp. Simul. 7 (2015), No. 4, 339-348. 19. Yu. I. Shokin, A. D. Rychkov, G. S. Khakimzyanov, and L. B. Chubarov, On numerical methods for solving runup problems, I. Comparative analysis of numerical algorithms for one-dimensional problems. Comp. Technol. 20 (2015), No. 5, 214-232. 20. Yu. I. Shokin, A. D. Rychkov, G. S. Khakimzyanov, and L. B. Chubarov, On numerical methods for solving runup problems, II. Experience with model problems. Comp. Technol. 20 (2015), No. 5, 233-250. 21. C. E. Synolakis, The Runup of Long Waves. Ph.D. Thesis, California Inst. Technol., Pasadena, California, 1986. 22. C. E. Synolakis, The runup of solitary waves. J. Fluid Mech. 185 (1987), No. 6, 523-545. 23. C. E. Synolakis, E. N. Bernard, V. V. Titov, U. Kanoglu, and F. I. Gonzalez, Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models. NOAA Technical Memorandum OAR PMEL-135, Pacific Marine Environmental Laboratory, Seattle, WA, 2007. 24. C. E. Synolakis, E. N. Bernard, V. V. Titov, U. Kanoglu, and F. I. Gonzalez, Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models. NOAA Technical Memorandum OAR PMEL-135, Pacific Marine Environmental Laboratory, Seattle, WA, 2007. URL: http://nctr.pmel.noaa.gov/benchmark/SP-3053.pdf 25. C. E. Synolakis, E. N. Bernard, V. V. Titov, U. Kanoglu, and F. I. Gonzalez, Validation and verification of tsunami numerical models. Pure Appl. Geophis. 165 (2008), 2197-2228. 26. S. Tadepalli and C. E. Synolakis, The runup of N-waves on sloping beaches. Proc. Royal Soc. London. A. 445 (1994), 99-112.