Цитирование: | 1. F. Alcrudo and P. Garcia-Navarro, A high-resolution Godunov-type scheme in finite volumes for the 2D shallow water equations. Int. J. Numer. Methods Fluids 16 (1993), 489-505.
2. K. Anastaious and C. T. Chan, Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. Int. J. Numer. Methods Fluids 24 (1997), 1225-1245.
3. S. P. Bautin, S. L. Deryabin, A. F. Sommer, G. S. Khakimzyanov, and N. Yu. Shokina, Use of analytic solutions in the statement of difference boundary conditions on a movable shoreline. Russ. J. Numer. Anal. Math. Modelling 26 (2011), No. 4, 353-377.
4. S. A. Beizel, N. Yu. Shokina, G. S. Khakimzyanov, L. B. Chubarov, O. A. Kovyrkina, and V. V. Ostapenko, On some numerical algorithms for computation of tsunami runup in the framework of shallow water model. I. Comp. Technol. 19 (2014), No. 1, 40-62.
5. Y.-S. Cho, M. J. Briggs, U. Kanoglu, C. E. Synolakis, and P. L.-F. Liu, Runup of solitary waves on a circular island. J. Fluid Mech. 302 (1995), 259-285.
6. L. B. Chubarov, A. D. Rychkov, G. S. Khakimzyanov, and Yu. I. Shokin, On numerical methods for solving runup problems. Comparative analysis of numerical algorithms and numerical results. In: Proc. VII European Congr. on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016). Crete Island, Greece, 5-10 June 2016 (Eds. M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris). URL: https:eccomas2016.org/proceedings.
7. F. I. Gonzalez, R. J. LeVeque, P. Chamberlain, B. Hirai, J. Varkovitzky, and D. L. George, (USGS) Validation of the GeoClaw Model. NTHMP MMS Tsunami Inundation Model Validation Workshop. GeoClaw Tsunami Modeling Group Univ. of Washington. URL: http://depts.washington.edu/clawpack/links/nthmp-benchmarks/geoclaw-results.pdf
8. V. K. Gusiakov, Residual displacements on the surface of an elastic half space. In: Conditionally Well-Posed Problems of Mathematical Physics in the Interpretation of Geophysical Observations. VTs SO AN, Novosibirsk, 1978, pp. 23-51.
9. S. S. Hrapov, A. V. Khoperskov, N. M. Kuzmin, A. V. Pisarev, and I. A. Kobelev, A numerical scheme for simulating the dynamics of surface water on the basis of the combined SPH-TVD approach. Comp. Methods Program. Tech. 12 (2011), 282-297.
10. G. Khakimzyanov, N. Yu. Shokina, D. Dutykh, and D. Mitsotakis, A new runup algorithm based on local high-order analytic expansions. J. Comp. Appl. Math. 298 (2016), 82-96.
11. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Monographs and Surveys in Pure and Applied Mathematics Vol. 118. Chapman & Hall/CRC, Boca Raton, FL, USA, 2001.
12. M. De Lefe, D. Le Touze, and B. Alessandrini, SPH modeling of shallow-water coastal flows. J. Hydraulic Research 48 (2010), Extra Issue, 118-125.
13. J. J. Monaghan, Simulating free surface flows with SPH. J. Comp. Phys. 110 (1994), No. 2, 399-406.
14. National Tsunami Hazard Mitigation Program. Tsunami Benchmark Tests of GeoClaw. URL: http://depts.washington.edu/clawpack/links/nthmp-benchmarks/
15. National Tsunami Hazard Mitigation Program. Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. Boulder: U.S. Department of Commerce/ NO-AA/NTHMP; (NOAA Special Report), 2012.
16. Y. Okada, Surface deformation due to shear and tensile faults in the half space. Bulletin Seis. Soc. Amer. 75 (1985), 1135-1154.
17. A. Rodin, I. Didenkulova, and E. Pelinovsky, Numerical study for runup of breaking waves of different polarities on a sloping beach. In: Extreme Ocean Waves (Eds. E. Pelinovsky and C. Kharif). Springer Int. Publ., Switzerland, 2016.
18. Yu. I. Shokin, S. A. Beisel, A. D. Rychkov, and L. B. Chubarov, Numerical simulation of the tsunami runup on the coast using the method of large particles. Math. Models Comp. Simul. 7 (2015), No. 4, 339-348.
19. Yu. I. Shokin, A. D. Rychkov, G. S. Khakimzyanov, and L. B. Chubarov, On numerical methods for solving runup problems, I. Comparative analysis of numerical algorithms for one-dimensional problems. Comp. Technol. 20 (2015), No. 5, 214-232.
20. Yu. I. Shokin, A. D. Rychkov, G. S. Khakimzyanov, and L. B. Chubarov, On numerical methods for solving runup problems, II. Experience with model problems. Comp. Technol. 20 (2015), No. 5, 233-250.
21. C. E. Synolakis, The Runup of Long Waves. Ph.D. Thesis, California Inst. Technol., Pasadena, California, 1986.
22. C. E. Synolakis, The runup of solitary waves. J. Fluid Mech. 185 (1987), No. 6, 523-545.
23. C. E. Synolakis, E. N. Bernard, V. V. Titov, U. Kanoglu, and F. I. Gonzalez, Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models. NOAA Technical Memorandum OAR PMEL-135, Pacific Marine Environmental Laboratory, Seattle, WA, 2007.
24. C. E. Synolakis, E. N. Bernard, V. V. Titov, U. Kanoglu, and F. I. Gonzalez, Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models. NOAA Technical Memorandum OAR PMEL-135, Pacific Marine Environmental Laboratory, Seattle, WA, 2007. URL: http://nctr.pmel.noaa.gov/benchmark/SP-3053.pdf
25. C. E. Synolakis, E. N. Bernard, V. V. Titov, U. Kanoglu, and F. I. Gonzalez, Validation and verification of tsunami numerical models. Pure Appl. Geophis. 165 (2008), 2197-2228.
26. S. Tadepalli and C. E. Synolakis, The runup of N-waves on sloping beaches. Proc. Royal Soc. London. A. 445 (1994), 99-112.
|