Инд. авторы: Sharaya I.A., Shary S.P.
Заглавие: Reserve of characteristic inclusion as recognizing functional for interval linear systems
Библ. ссылка: Sharaya I.A., Shary S.P. Reserve of characteristic inclusion as recognizing functional for interval linear systems // Lecture Notes in Computer Science. - 2016. - Vol.9553. - P.148-167. - ISSN 0302-9743. - EISSN 1611-3349.
Внешние системы: DOI: 10.1007/978-3-319-31769-4_13; РИНЦ: 27009881; SCOPUS: 2-s2.0-84963796213;
Реферат: eng: The paper considers the interval linear inclusion Cx ⊆ d in the Kaucher interval arithmetic. We introduce a quantitative measure of its fulfillment, called “reserve”, and investigate its properties and application. We show that the reserve proves useful in the study of AE-solutions and quantifier solutions to interval linear problems. In particular, using the reserve can help to recognize position of a point with respect to the solution set, emptiness of the solution set and of its interior, etc. © Springer International Publishing Switzerland 2016.
Ключевые слова: AE-solutions; Characteristic inclusion; Linear systems; Solution set; Reserve; Recognizing functional; Quantitative measures; Linear problems; Interval linear systems; Interval arithmetic; Computers; Computer science; Artificial intelligence; Solution set; Reserve; Recognizing functional; Quantifier solutions; Interval linear system;
Издано: 2016
Физ. характеристика: с.148-167
Конференция: Название: 16th International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, SCAN 2014
Аббревиатура: SCAN 2014
Город: Würzburg
Страна: Germany
Даты проведения: 2014-09-21 - 2014-09-26
Цитирование: 1. Beeck, H.: Über die Struktur und Abschätzungen der Lösungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten. Computing 10(3), 231-244 (1972). doi:10.1007/BF02316910 2. Dymova, L.: Soft Computing in Economics and Finance. Springer, Heidelberg (2011). doi:10.1007/978-3-642-17719-4 3. Goldsztejn, A., Chabert, G.: On the approximation of linear AE-solution sets. Proceedings of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics SCAN 2006, Duisburg, Germany, 26-29 September 2006, 18 p (2006). doi:10.1109/SCAN.2006.33 4. Hladík, M.: AE-solutions and AE-solvability to general interval linear systems. Linear Algebra Appl. 465, 221-238 (2015). doi:10.1016/j.laa.2014.09.030 5. Kaucher, E.: Algebraische Erweiterungen der Intervallrechnung unter Erhaltung der Ordnungs-und Verbandsstrukturen. Comput. Suppl. 1, 65-79 (1977) 6. Kaucher, E.: Interval analysis in the extended interval space IR. Comput. Suppl. 2, 33-49 (1980) 7. Kearfott, R.B., Nakao, M., Neumaier, A., Rump, S., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis. Comput. Technol. 15(1), 7-13 (2010) 8. Lakeyev, A.V.: Computational complexity of estimation of generalized solution sets for interval linear systems. Comput. Technol. 8(1), 12-23 (2003). http://www.nsc.ru/interval/lakeyev/publications/03ct.pdf 9. Popova, E.: Explicit description of AE-solution sets for parametric linear systems. SIAM Journal on Matrix Analysis and Applications 33(4), 1172-1189 (2012). doi:10.1137/120870359 10. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997). (Reprint of the 1979 Princeton Mathematical Series 28th edn.) 11. Rohn, J.: A Handbook of Results on Interval Linear Problems. Electronic book, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2012). http://uivtx.cs.cas.cz/∼rohn/publist/!aahandbook.pdf 12. Sainz, M.Á., Gardeñes, E., Jorba, L.: Interval estimations of solution sets to realvalued systems of linear or non-linear equations. Reliable Comput. 8, 283-305 (2002). doi:10.1023/A:1016385132064 13. Sharaya, I.A.: Quantifier-free descriptions of interval-quantifier linear systems. Proc. Inst. Math. Mech. UB RAS (Trudy Instituta Matematiki i Mekhaniki UrO RAN) 20(2), 311-323 (2014). (in Russian) http://www.nsc.ru/interval/sharaya/Papers/trIMM14.pdf 14. Shary, S.P.: Solving the linear interval tolerance problem. Math. Comput. Simul. 39, 53-85 (1995) 15. Shary, S.P.: Algebraic solutions to interval linear equations and their applications. In: Alefeld, G., Herzberger, J. (eds.) Numerical Methods and Error Bounds, Proceedings of IMACS-GAMM International Symposium on Numerical Methods and Error Bounds, Oldenburg, Germany, July 9-12, 1995. Mathematical Research, vol. 89, pp. 224-233. Akademie Verlag, Berlin (1996). http://www.nsc.ru/interval/shary/Papers/Herz.pdf 16. Shary, S.P.: A new technique in systems analysis under interval uncertainty and ambiguity. Reliable Comput. 8(5), 321-418 (2002). http://www.nsc.ru/interval/shary/Papers/ANewTech.pdf 17. Shary, S.P.: A new method for inner estimation of solution sets to interval linear systems. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with Uncertainties. Mathematical Engineering, vol. 3, pp. 21-42 (2011). doi: 10.1007/978-3-642-15956-5_2 18. Shary, S.P.: Maximum consistency method for data fitting under interval uncertainty. J. Glob. Optim. 1-16 (2015). doi:10.1007/s10898-015-0340-1 19. Shary, S.P., Sharaya, I.A.: Recognizing solvability of interval equations and its application to data analysis. Comput. Technol. 18(3), 80-109 (2013). (in Russian) 20. Shary, S.P., Sharaya, I.A.: On solvability recognition for interval linear systems of equations. Optim. Lett. 10(2), 247-260 (2015). doi:10.1007/s11590-015-0891-6