Инд. авторы: Polyansky O.P., Reverdatto V.V., Babichev A.V., Sverdlova V.G.
Заглавие: The mechanism of magma ascent through the solid lithosphere and relation between mantle and crustal diapirism: Numerical modeling and natural examples
Библ. ссылка: Polyansky O.P., Reverdatto V.V., Babichev A.V., Sverdlova V.G. The mechanism of magma ascent through the solid lithosphere and relation between mantle and crustal diapirism: Numerical modeling and natural examples // Russian Geology and Geophysics. - 2016. - Vol.57. - Iss. 6. - P.843-857. - ISSN 1068-7971. - EISSN 1878-030X.
Внешние системы: DOI: 10.1016/j.rgg.2016.05.002; РИНЦ: 27126374; SCOPUS: 2-s2.0-84974805084; WoS: 000378057500001;
Реферат: eng: Diapirism can be regarded as the main mechanism of transport through the lithosphere for both felsic and mafic/ultramafic magmas. However, the lack of field observations makes it difficult to identify the key mechanism responsible for the formation of dome-shaped structures. In this study, emplacement of natural diapirs is reconstructed by numerical experiments handling realistic rheological and petrological models for the crust and mantle lithosphere. Three different regimes of diapiric ascent were established depending on the chosen model rheology: (1) single-stage diapir ascent; (2) pulsating ascent of successive batches of mantle-derived magma to the base of the crust with a periodicity of 2-3 Myr; (3) emplacement of extensive magma bodies in the form of sills either beneath the base of the crust (underplating) or to deeper mantle levels. The timescale of 30 Myr for a heat source at the base of the lithosphere is sufficient to initiate the ascent of a diapir through the mantle and crust. The study provides the estimates of rheological properties of the lithosphere and partially molten material at which diapiric ascent through the mantle and crust can occur. © 2016 Elsevier B.V.
Ключевые слова: Viscosity; Rheology; Numerical modeling; Melting; Magma; Lithosphere; Intrusion; Diapirs; Continental crust;
Издано: 2016
Физ. характеристика: с.843-857
Цитирование: 1. Babichev A.V., Polyansky O.P., Korobeinikov S.N., Reverdatto V.V. Mathematical Modeling of Magma Fracturing and Dike Formation. Dokl. Earth Sci. 2014, 458(2):1298-1301. 2. Baltybaev Sh.K., Glebovitskii V.A., Shul'diner V.I., Kozyreva I.V. The Meyeri Thrust: The Main Element of the Suture at the Boundary between the Karelian Craton and the Svecofennian Belt in the Ladoga Region of the Baltic Shield. Dokl. Earth Sci. 1996, 348(4):581-584. 3. Baltybaev Sh.K., Levchenkov O.A., Levskii L.K. The Svecofennian Belt of the Fennoscandia: Spatio-Temporal Correlation of the Early Proterozoic Endogenous Processes [in Russian] 2009, Nauka, St. Petersburg. 4. Bittner D., Schmeling H. Numerical modelling of melting processes and induced diapirism in the lower crust. Geophys. J. Int. 1995, 123:59-70. 5. Brown M. Granite: From genesis to emplacement. Geol. Soc. Am. Bull. 2013, 125:1079-1113. 6. Buck W.R. Modes of continental lithospheric extension. J. Geophys. Res. 1991, 96(B12):20,161-20,178. 7. Burov E., Cloetingh S. Controls of mantle plumes and lithospheric folding on modes of intraplate continental tectonics: differences and similarities. Geophys. J. Int. 2009, 178(3):1691-1722. 8. Burov E., Jaupart C., Guillou-Frottier L. Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. J. Geophys. Res. 2003, 108:2177. 10.1029/2002JB001904. 9. Carter N.L., Tsenn M.C. Flow properties of continental lithosphere. Tectonophysics 1987, 136:27-63. 10. Chopra P.N., Patterson M.S. The role of water in the deformation of dunite. J. Geophys. Res. 1984, 89:7861-7876. 11. Choukroune P., Ludden J.N., Chardon D., Calvert A.J., Bouhallier H. Archaean crustal growth and tectonic processes: a comparison of the Superior Province, Canada and the Dharwar Craton. India. Geol. Society London Special Publ. 1997, 121:63-98. 12. Dobretsov N.L. Global geodynamic evolution of the Earth and global geodynamic models. Russian Geology and Geophysics (Geologiya i Geofizika) 2010, 51(6):592-610. 761-787. 13. Droop, G.T.R., Brodie, K.H., 2012. Anatectic melt volumes in the thermal aureole of the Etive Complex, Scotland: the roles of fluid-present and fluid-absent melting. J. Metamorphic Geol., doi: 10.1111 /j. 1525-1314. 2012.01001.x. 14. Eskola, P., 1949. Origin of mantled gneiss domes. Quart. J. Geol. Soc. London 104, part 4. 15. Thermal Field of the Interior of Siberia (Trans. IGiG SO RAN, Issue 681) [in Russian] 1987, Nauka, Novosibirsk. E.E. Fotiadi (Ed.). 16. Griffin W.L., Sturt B.A., O'Neill C.J., Kirkland C.L., O'Reilly S.Y. Intrusion and contamination of high-temperature dunitic magma: the Nordre Bumandsfjord pluton, Seiland, Arctic Norway. Contrib. Mineral. Petrol. 2013, 165:903-930. 17. Grigor'eva L.V., Shinkarev N.F. Emplacement Conditions of DomeShaped Structures of the Ladoga region. Izv. Akad. Nauk SSSR. Ser. Geol. 1981, 3:41-50. 18. He B., Xu Y.-G., Paterson S. Magmatic diapirism of the Fangshan pluton, southwest of Beijing, China. J. Struct. Geol. 2009, 31:615-626. 19. Herzberg C., Condie K., Korenaga J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 2010, 292:79-88. 20. Jansen J.B.H., Schuiling R.D. Metamorphism of Naxos: petrology and geothermal gradients. Am. J. Sci. 1976, 276:1225-1253. 21. Karato S., Wu P. Rheology of the upper mantle: a synthesis. Science 1993, 260:771-778. 22. Kirdyashkin A.A., Kirdyashkin A.G. Interaction of a thermochemical plume with free convection mantle flows and its influence on mantle melting and recrystallization. Russian Geology and Geophysics (Geologiya i Geofizika) 2013, 54(5):544-554. 707-721. 23. Kiselev A.I., Yarmolyuk V.V., Ivanov A.V., Egorov K.N. Middle Paleozoic basaltic and kimberlitic magmatism in the northwestern shoulder of the Vilyui Rift, Siberia: relations in space and time 2014, 55(2):144-152. 185-196. 24. Korobeinikov S.N. Nonlinear Deformation of Solid Bodies [in Russian] 2000, Izd. SO RAN, Novosibirsk. 25. Korsman, K., Korja, T., Pajunen, M., Virransalo, P.and the GGT/SVEKA Working Group The GGT/SVEKA Transect-Structure and Evolution of the Continental Crust in the Paleoproterozoic Svecofennian Orogen in Finland. Int. Geol. Rev. 1999, 41:287-333. 26. Kronenberg A.K., Tullis J. Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. J. Geophys. Res. 1984, 89:4281-4297. 27. Kuzmin M.I., Yarmolyuk V.V., Kravchinsky V.A. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth Sci. Rev. 2010, 102:29-59. 28. Little T.A., Hacker B.R., Gordon S.M., Baldwin S.L., Fitzgerald P.G., Ellis S., Korchinski M. Diapiric exhumation of Earth's youngest (UHP) eclogites in the gneiss domes of the D'Entrecasteaux Islands, Papua New Guinea. Tectonophysics 2011, 510:39-68. 29. Masaitis V.L. Devonian basalts of Siberian platform, and their heterogenous mantle sources. Large Igneous Provinces of Asia, Mantle Plumes and Metallogeny: Abstracts of the International Symposium. Publ. House of SB RAS, Novosibirsk, pp. 39-42 2007. 30. Mei S., Bai W., Hiraga T., Kohlstedt D.L. Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions. Earth Planet. Sci. Lett. 2002, 201:491-507. 31. Mints M.V., Glaznev V.N., Konilov A.N., et al. Early Precambrian of the Northeast Baltic Shield: Paleogeodynamics, Structure and Evolution of the Continental Crust [in Russian] 1996, Nauchnyi Mir, Moscow. 32. Montelli R., Nolet G., Dahlen F.A., Masters G., Engdahl R., Hung S. Finite-frequency tomography reveals a variety of plums in the mantle. Science 2004, 303:338-343. 33. Morozov Yu.A., Gaft D.E. On the nature of granite-gneiss domes of the Northern Ladoga region. Structure and Petrology of the Precambrian Complexes [in Russian] 1985, 3-120. Preprint IFZ AN SSSR, Moscow. V.V. Ez (Ed.). 34. MSC.MARC Users Guide, 2012. MSC.Software Corporation, Santa Ana. 35. Norlander B.H., Whitney D.L., Teyssier Ch., Vanderhaeghe O. Partial melting and decompression of the Thor-Odin dome, Shuswap metamorphic core complex. Lithos 2002, 61:103-125. 36. Nozhkin A.D., Turkina O.M., Bibikova E.V., Terleev A.A., Khomentovskii V.V. Riphean granite-gneiss domes of the Yenisei Ridge: geological structure and U-Pb isotope age. Geologiya i Geofizika (Russian Geology and Geophysics) 1999, 40(9):1305-1313. 1284-1292. 37. Pek A.A., Mal'kovsky V.I., Korikovsky S.P. Reactive infiltration instability of a granitization front during the generation and development of granite-gneiss domes. Petrology 2012, 20(3):205-217. 38. Petford N. Dykes or diapirs?. Trans. Roy. Soc. Edinburgh-Earth Sci. 1996, 87:105-114. 10.1017/S0263593300006520. 39. Pitcher W.S., Berger A.R. The Geology of Donegal 1972, A Study of Granite Emplacement and Unroofing, Wiley, New York. 40. Polyansky O.P., Efremov V.N. Diagnostics of dome-like structures of the Northern Ladoga region on the basis of thermodynamic data and tectonophysical analysis. Geologiya i Geofizika (Soviet Geology and Geophysics) 1989, 30(4):43-47. 36-39. 41. Polyansky O.P., Babichev A.V., Reverdatto V.V., Korobeinikov S.N., Sverdlova V.G. Computer modeling of granite magma diapirism in the Earth's crust. Dokl. Earth Sci. 2009, 429(8):1380-1384. 42. Polyansky O.P., Babichev A.V., Korobeinikov S.N., Reverdatto V.V. Computer modeling of granite gneiss diapirism in the Earth's crust: controlling factors, duration, and temperature regime. Petrology 2010, 18(4):432-446. 43. Polyansky O.P., Korobeinikov S.N., Babichev A.V., Reverdatto V.V. Formation and upwelling of mantle diapirs through the cratonic lithosphere: numerical thermomechanical modeling. Petrology 2012, 20(2):120-137. 44. Polyansky O.P., Prokop'ev A.V., Babichev A.V., Korobeinikov S.N., Reverdatto V.V. The rift origin of the Vilyui basin (East Siberia), from reconstructions of sedimentation and mechanical mathematical modeling. Russian Geology and Geophysics (Geologiya i Geofizika) 2013, 54(2):121-137. 163-183. 45. Polyansky O.P., Korobeinikov S.N., Babichev A.V., Reverdatto V.V., Sverdlova V.G. Numerical modeling of mantle diapirism as a cause of intracontinental rifting. Izv., Phys. Solid Earth 2014, 50(6):839-852. 46. Ranalli G. Rheology of the Earth 1995, Chapman & Hall, London. 47. Rey P.F., Teyssieur C., Whitney D.L. Extension rates, crustal melting, and core complex dynamics. Geology 2009, 37:391-394. 48. Rosenberg C.L., Handy M.R. Experimental deformation of partially melted granite revisited: implications for the continental crust. J. Metamorphic Geol. 2005, 23:19-28. 49. Sandiford M., Van Kranendonk M.J., Bodorkos S. Conductive incubation and the origin of dome-and-keel structure in Archean granite- greenstone terrains: A model based on the eastern Pilbara Craton, Western Australia. Tectonics 2004, 23:TC1009. 10.1029/2002TC001452. 50. Sklyarov E.V. Exhumation of metamorphic complexes: basic mechanisms. Russian Geology and Geophysics (Geologiya i Geofizika) 2006, 47(1):68-72. 71-75. 51. Sklyarov E.V., Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Sizykh A.I., Bulanov V.A. Metamorphism and Tectonics [in Russian] 2001, Intermet Engineering, Moscow. 52. Sobolev A.V., Sobolev S.V., Kuzmin D.V., Malich K.N., Petrunin A.G. Siberian meimechites: origin and relation to flood basalts and kimberlites. Russian Geology and Geophysics (Geologiya i Geofizika) 2009, 50(12):999-1033. 1293-1334. 53. Thybo H., Artemieva I.M. Moho and magmatic underplating in continental lithosphere. Tectonophysics 2013, 609:605-619. 54. Toe W., Vanderhaeghe O., Andre-Mayer A.-S., Feybesse J.-L., Milesi J.-P. From migmatites to granites in the Pan-African Damara orogenic belt, Namibia. J. Afr. Earth Sci. 2013, 85:62-74. 55. Van Kranendonk M.J., Collins W.J., Hickman A., Pawley M.J. Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Res 2004, 131:173-211. 56. Vanderhaeghe O. Structural development of the Naxos migmatite dome. Pap 2004, 380:211-228. Boulder, Colorado. D.L. Whitney, C. Teyssier, C.S. Siddoway (Eds.). 57. Walter M.J. Melt extraction and compositional variability in mantle lithosphere. Treatise in Geochemistry, Holland, H.D., Turekian, K.K. (Eds.), Vol. 2: The Mantle and Core. Elsevier-Pergamon, Oxford, pp. 363-394 2003, R.W. Carlson (Ed.). 58. Weinberg R.F., Podladchikov Y. Diapiric ascent of magmas through power crust and mantle. J. Geophys. Res. 1994, 99(B5):9543-9559. 59. Yarmolyuk V.V., Kozlovsky A.M., Kuzmin M.I. Zoned magmatic areas and anorogenic batholith formation in the Central Asian Orogenic Belt (by the example of the Late Paleozoic Khangai magmatic area). Russian Geology and Geophysics (Geologiya i Geofizika) 2016, 57(3):357-370. 457-475.