Инд. авторы: Kirdyashkin A.A., Kirdyashkin A.G., Distanov V.E., Gladkov I.N.
Заглавие: Geodynamic regimes of thermochemical mantle plumes
Библ. ссылка: Kirdyashkin A.A., Kirdyashkin A.G., Distanov V.E., Gladkov I.N. Geodynamic regimes of thermochemical mantle plumes // Russian Geology and Geophysics. - 2016. - Vol.57. - Iss. 6. - P.858-867. - ISSN 1068-7971. - EISSN 1878-030X.
Внешние системы: DOI: 10.1016/j.rgg.2016.05.003; РИНЦ: 27126264; SCOPUS: 2-s2.0-84974795052; WoS: 000378057500002;
Реферат: eng: Laboratory and numerical experiments simulating the heat transfer and flow structure of thermochemical mantle plumes provide insights into the mechanisms of plume eruption onto the surface depending on the relative thermal power of plumes Ka = N/N1, where N and N1 are the heat transferred from the plume base to the plume conduit and the heat transferred from the plume conduit to the surrounding mantle, respectively, under steady thermal conduction. There are three main types of plumes according to the Ka criterion: (i) plumes with low thermal power (Ka < 1.15), which fail to reach the surface, (ii) plumes with intermediate thermal power (1.15 < Ka < 1.9), which occur beneath cratons and transport melts from depths below 150 km, where diamond is stable (diamondiferous plumes), and (iii) plumes with a mushroom-shaped head (1.9 < Ka < 10), which are responsible for large intrusive bodies, including batholiths. The volume of erupted melt and the depth from which the melt is transported to the surface are estimated for plumes of types (ii) and (iii). The relationship between the plume head area (along with the plume head diameter) and the relative thermal power is obtained. The relationship between the thickness of the block above the plume head and the relative thermal power is derived. On the basis of the results obtained, the geodynamic-regime diagram of thermochemical mantle plumes, including the plumes with Ka > 10, has been constructed. © 2016 Elsevier B.V.
Ключевые слова: Basidiomycota; Thermochemical plume; Thermal power; Plume head; Plume conduit; Melt; Intrusive bodies; Diamondiferous plumes; Batholiths;
Издано: 2016
Физ. характеристика: с.858-867
Цитирование: 1. Anisichkin V.F. Shock-wave data: evidence for the presence of carbon in the Earth's core and lower mantle. Fizika Goreniya i Vzryva 2000, 36(4):108-115. 2. Brandon A.D., Walker R.J. The debate over core-mantle interaction. Earth Planet. Sci. Lett. 2005, 232:211-225. 3. Campbell I.H. Large igneous provinces and the mantle plume hypothesis. Elements 2005, 1:265-269. 4. Campbell I.H., Griffiths R.W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 1990, 99:79-93. 5. Chalapathi Rao N.V., Lehmann B. Kimberlites, flood basalts and mantle plumes: New insights from the Deccan Large Igneous Province. Earth Sci. Rev. 2011, 107:315-324. 6. Collerson K.D., Williams Q., Ewart A.E., Murphy D.T. Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: the role of CO2-fluxed lower mantle melting in thermochemical upwellings. Phys. Earth Planet. Inter. 2010, 181:112-131. 7. Coulliette D.L., Loper D.E. Experimental, numerical and analytical models of mantle starting plumes. Phys. Earth Planet. Inter. 1995, 92:143-167. 8. Dawson J.B. Kimberlites and Their Xenoliths 1980, Springer-Verlag, Berlin-New York. 9. Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A. Mantle Geodynamics [in Russian] 2001, Izd. SO RAN, Filial GEO, Novosibirsk. second ed. 10. Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A. Parameters of hotspots and thermochemical plumes. Russian Geology and Geophysics (Geologiya i Geofizika) 2005, 46(6):589-602. 757-588. 11. Dobretsov N.L., Kirdyashkin A.A., Kirdyashkin A.G., Vernikovsky V.A., Gladkov I.N. Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos 2008, 100:66-92. 12. Dobretsov N.L., Borisenko A.S., Izokh A.E., Zhmodik S.M. A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal ore deposits. Russian Geology and Geophysics (Geologiya i Geofizika) 2010, 51(9):903-924. 1159-1187. 13. Ernst R.E., Buchan K.L. Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces. J. Geodyn. 2002, 34:309-342. 14. Farnetani C.G., Richards M.A. Numerical investigations of the mantle plume initiation model for flood basalt events. J. Geophys. Res. 1994, 99(B7):13,813-13,833. 15. Fedortchouk Y., Matveev S., Carlson J.A. H2O and CO2in kimberlitic fluid as recorded by diamonds and olivines in several Ekati Diamond Mine kimberlites, Northwest Territories, Canada. Earth Planet. Sci. Lett. 2010, 289:549-559. 16. Garnero E.J. Heterogeneity of the lowermost mantle. Ann. Rev. Earth Planet. Sci. 2000, 28:509-537. 17. Garnero E.J. A new paradigm for Earth's core-mantle boundary. Science 2004, 304:834-836. 18. Garnero E.J., McNamara A. Structure and dynamics of Earth's lower mantle. Science 2008, 320:626-628. 19. Gladkov, I.N., Distanov, V.E., Kirdyashkin, A.A., Kirdyashkin, A.G., 2012. Stability of the liquid-solid boundary: an example from plumes. Izv. RAN, Mekhanika Zhidkosti i Gaza, No. 4, 5-22. 20. Griffiths R.W., Campbell I.H. Stirring and structure in mantle starting plumes. Earth Planet. Sci. Lett. 1990, 99:66-78. 21. Jaupart C., Mareschal J.-C. Heat flow and thermal structure of the lithosphere. Crust and Lithosphere Dynamics 2007, 6:217-251. Elsevier, Amsterdam. G. Schubert (Ed.). 22. Jaupart C., Mareschal J.-C. Constraints on crustal heat production from heat flow data. The Crust 2014, 4:53-73. Elsevier, Amsterdam. K. Turekian, H. Holland (Eds.). 23. Katsura T., Yoneda A., Yamazaki D., Yoshino T., Ito E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 2010, 183:212-218. 24. Kennedy C.S., Kennedy G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 81(B14):2467-2470. 25. Kirdyashkin A.G., Kirdyashkin A.A. Thermochemical mantle plumes and their effect on crust uplift. Geotektonika 2015, 4:86-96. 26. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G. Thermochemical plumes. Geologiya i Geofizika (Russian Geology and Geophysics) 2004, 45(9):1057-1073. 1025-1042. 27. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., Gladkov I.N., Surkov N.V. Hydrodynamic processes associated with plume rise and conditions for eruption conduit formation. Russian Geology and Geophysics (Geologiya i Geofizika) 2005, 46(9):869-887. 891-907. 28. Kirdyashkin, A.A., Dobretsov, N.L., Kirdyashkin, A.G., 2009. Heat exchange between a thermochemical plume and the mantle around it in the presence of a horizontal mantle flow. Izv. RAN, Fizika Zemli, No.8, 66-82. 29. Kirdyashkin A.G., Kirdyashkin A.A., Gladkov I.N., Distanov V.E. Experimental modeling of the effect of relative thermal power on the shape of a plume conduit and the structure of free-convection flow in it. Russian Geology and Geophysics (Geologiya i Geofizika) 2012, 53(7):689-697. 900-911. 30. Kuzmin M.I., Yarmolyuk V.V., Kravchinsky V.A. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth Sci. Rev. 2010, 102:29-59. 31. Lin S.-C., van Keken P.E. Multiple volcanic episodes of flood basalts caused by thermochemical plumes. Nature 2005, 436:250-252. 32. Lin S.-C., van Keken P.E. Dynamics of thermochemical plumes: Plume formation and entrainment of a dense layer. Geochem. Geophys. Geosyst. 2006, 7. 33. Lin S.-C., van Keken P.E. Dynamics of thermochemical plumes: Complexity of plume structures and implications for the mapping of mantle plumes. Geochem. Geophys. Geosyst. 2006, 7. 34. Lin S.-C., van Keken P.E. Deformation, stirring and material transport in thermochemical plumes. Geophys. Res. Lett. 2006, 33. 35. Olson P., Singer H. Creeping plumes. J. Fluid Mech. 1985, 158:511-531. 36. Schubert G., Turcotte D.L., Olson P. Mantle Convection in the Earth and Planets 2001, Cambridge University Press, Cambridge. 37. Stein, C.A., 1995. Heat flow of the Earth, in: Ahrens, T.J. (Ed.), Global Earth Physics: a Handbook of Physical Constants. Am. Geophys. Union, Washington. DC, pp. 144-158. 38. Titov V.M., Anisichkin V.F., Bordzilovsky S.A., Karakhanov S.M., Turkin A.I. Measuring sound speed behind the shock wave front in iron-diamond mixtures. Fizika Goreniya i Vzryva 2004, 40(4):117-130. 39. Torsvik T.H., Burke K., Steinberger B., Webb S.J., Ashwal L.D. Diamonds sampled by plumes from the core-mantle boundary. Nature 2010, 466:352-357. 40. Trubitsyn V.P., Kharybin E.V. Thermochemical mantle plumes. Dokl. Earth Sci. 2010, 435(2):1656-1658. 41. Walzer U., Hendel R., Baumgardner J. The effects of a variation of the radial viscosity profile on mantle evolution. Tectonophysics 2004, 384:55-90. 42. Whitehead J.A., Luther D.S. Dynamics of laboratory diapir and plume models. J. Geophys. Res. 1975, 80(B5):705-717. 43. Yang T., Fu R. Thermochemical piles in the lowermost mantle and their evolution. Phys. Earth Planet. Inter. 2014, 236:109-116.