Инд. авторы: Andrianova N.N., Borisov A.M., Kazakov V.A., Mashkova E.S., Palyanov Y.N., Pitirimova E.A., Popov V.P., Rizakhanov R.N., Sigalaev S.K.
Заглавие: Graphitization of a diamond surface upon high-dose ion bombardment
Библ. ссылка: Andrianova N.N., Borisov A.M., Kazakov V.A., Mashkova E.S., Palyanov Y.N., Pitirimova E.A., Popov V.P., Rizakhanov R.N., Sigalaev S.K. Graphitization of a diamond surface upon high-dose ion bombardment // Bulletin of the Russian Academy of Sciences: Physics. - 2016. - Vol.80. - Iss. 2. - P.156-160. - ISSN 1062-8738. - EISSN 1934-9432.
Внешние системы: DOI: 10.3103/S1062873816020040; РИНЦ: 27150680; SCOPUS: 2-s2.0-84962418128;
Реферат: eng: Results from structural and morphological studies, measurements of the sheet electrical resistance, and estimating resistivity ρm of a graphite-like conducting surface layer formed upon high-dose irradiation of the (111) face of a synthetic diamond with Ar+ ions at an energy of 30 keV and a target temperature of 400°C are presented. It is found that the orienting effect of the diamond lattice is visible in the suppression of the formation of graphite crystallites with axis c perpendicular to the surface. The thickness of the modified layer is 40–50 nm, and its sheet resistance is 0.5 kΩ/sq. Resistivity ρm = 20–25 μΩ m of the modified layer lies within the range of ρ values of graphite and glassy carbon materials. © 2016, Allerton Press, Inc.
Ключевые слова: Ion bombardment; Target temperature; Morphological study; High-dose ion bombardment; Graphite crystallites; Electrical resistances; Diamond lattices; Conducting surfaces; Synthetic diamonds; Graphite; Diamonds; Carbon; Diamond surfaces;
Издано: 2016
Физ. характеристика: с.156-160
Цитирование: 1. Popov, V.P., Safronov, L.N., Naumova, O.V., et al., Adv. Mater. Res., 2011, vol. 276, p. 27. 2. Philipp, P., Bischoff, L., Treske, U., et al., Carbon, 2014, vol. 80, p. 677. 3. Popov, V.P., Safronov, L.N., Naumova, O.V., et al., Nucl. Instrum. Methods Phys. Res. B, 2012, vol. 282, p. 100. 4. Popov, V.P., Antonov, V.A., Safronov, L.N., et al., AIP Conf. Proc., 2012, vol. 1496, p. 261. 5. Rubanov, S., Suvorova, A., Popov, V.P., et al., Proc. 4th Int. Symp. on Advanced Microscopy and Theoretical Calculations (AMTC4), Hamamatsu, 2014, p. 100. 6. Popov, V.P., Gutakovskii, A.K., Kupriyanov, I.V., et al., Proc. APMC 10–ICONN 2012–ACMM 22, Perth, 2012, p. 639. 7. Andrianova, N.N., Borisov, A.M., Kazakov, V.A., et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2015, vol. 9, p. 346. 8. Gerasimov, A.I., Zorin, E.I., Pavlov, P.V., and Tetel’baum, D.I., in Fizicheskie osnovy ionno-luchevogo legirovaniya (Physical Foundations of Ion-Beam Doping), Gorky: Gorky Gos. Univ., GIFTI, 1972, p. 116. 9. Kiselev, N.A., Huthison, J.L., Roddatis, V.V., et al., Micron, 2005, vol. 36, p. 81. 10. Borisov, A.M. and Mashkova, E.S., Nucl. Instrum. Methods Phys. Res. B, 2007, vol. 258, p. 109. 11. Chernykh, P.N. and Chechenin, N.G., Metodika ionno-puchkovogo analiza na uskoritele HVEE AN-2500 (Ion-Beam Analysis at HVEE AN-2500 Accelerator), Moscow: Mosk. Gos. Univ., 2011. 12. Chernikov, V.N., Gorodetsky, A.E., Kanashenko, S.L., et al., J. Nucl. Mater., 1994, vol. 217, p. 250. 13. Borisov, A.M., Virgil’ev, Y u.S., and Mashkova, E.S., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2008, vol. 2, p. 52. 14. Andrianova, N.N., Borisov, A.M., Mashkova, E.S., and Virgiliev, Yu.S., J. Spacecr. Rockets, 2011, vol. 48, p. 45. 15. Andrianova, N.N., Borisov, A.M., Mashkova, E.S., and Virgiliev, Yu.S., Nucl. Instrum. Methods Phys. Res. B, 2013, vol. 315, p. 240. 16. Harris, P.J.F., Carbon Nanotubes and Related Structures. New Materials for the Twenty-first Century, Cambridge: Cambridge Univ. Press, 1999. 17. Andrianova, N.N., Borisov, A.M., Virgil’ev, Y u.S., et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2008, vol. 2, p. 376. 18. Bespalova, O.V., Borisov, A.M., Vostrikov, V.G., et al., Phys. At. Nucl., 2009, vol. 72, no. 10 p. 1664. 19. Seeger, K., Semiconductor Physics, Springer-Verlag, 1973. 20. Ostrovskii, V.S., Osnovy materialovedeniya iskusstvennykh grafitov (Foundations of Material Science for Artificial Graphites), Moscow: Metallurgizdat, 2011. 21. Takahiro, K., Zhang, K., Rotter, F., et al., Nucl. Instrum. Methods Phys. Res. B, 2007, vol. 256, p. 378. 22. Andrianova, N.N., Borisov, A.M., Mashkova, E.S., et al., Horiz. World Phys., 2013, vol. 280, p. 171. 23. Andrianova, N.N., Borisov, A.M., Mashkova, E.S., et al., Vacuum, 2010, vol. 84, p. 1033. 24. Andrianova, N.N., Borisov, A.M., Mashkova, E.S., et al., Nucl. Instrum. Methods Phys. Res. B, 2015, vol. 354, p. 146. 25. Gottstein, G., Physical Foundations of Materials Science, Berlin, Heidelberg: Springer-Verlag, 2004. 26. Andrianova, N.N., Borisov, A.M., Kazakov, V.A., Mashkova, E.S., Rizakhanov, R.N., and Sigalaev, S.K., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2015, vol. 9, p. 237. 27. Khmelnitsky, R.A. and Gippius, A.A., Phase Transitions, 2014, vol. 87, p. 175.