Инд. авторы: Skuzovatov S.Y., Sklyarov E.V., Shatsky V.S., Wang K.-L., Kulikova K.V., Zarubina O.V.
Заглавие: Granulites of the South Muya block (Baikal-Muya Foldbelt): Age of metamorphism and nature of protolith
Библ. ссылка: Skuzovatov S.Y., Sklyarov E.V., Shatsky V.S., Wang K.-L., Kulikova K.V., Zarubina O.V. Granulites of the South Muya block (Baikal-Muya Foldbelt): Age of metamorphism and nature of protolith // Russian Geology and Geophysics. - 2016. - Vol.57. - Iss. 3. - P.451-463. - ISSN 1068-7971. - EISSN 1878-030X.
Внешние системы: DOI: 10.1016/j.rgg.2016.03.007; РИНЦ: 27145644; SCOPUS: 2-s2.0-84962163501; WoS: 000373092400007;
Реферат: eng: High-pressure mafic granulites and garnet pyroxenites occur within the South Muya block as boudins or lenses among metamorphic rocks of the Kindikan Group. Their primary minerals crystallized at 670-750 °C and 9.5-12.0 kbar. Granulite metamorphism peaked at 630 Ma, according to LA-ICP-MS U-Pb zircon ages. Judging by their major- and trace-element compositions and Hf isotope ratios in zircons, the South Muya granulites were derived from differentiated within-plate basalts, which, in turn, resulted from melting of juvenile mantle source and Meso- or Paleoproterozoic crust. The events of granulite and eclogite metamorphism in the South and North Muya blocks, respectively, were coeval and the two blocks were spatially close to each other at the onset of Late Baikalian subduction and collision events. © 2016, V.S. Sobolev IGM, Siberian Branch of the RAS.
Ключевые слова: Zircon; U-Pb age; South Muya block; Garnet pyroxenites; Continental subduction; Central Asian Orogenic Belt; Granulites;
Издано: 2016
Физ. характеристика: с.451-463
Цитирование: 1. Avchenko O.V., Gabov N.F., Kozyrev I.V., Konikov A.Z., Travin L.V. Eclogites of the North Muya block: composition and genesis. Izv. AN SSSR, Ser. Geol 1989, 5:68-82. 2. Berman, R.G., 2007. winTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations. Geological Survey of Canada, Open File 5462 (ed. 2.32). 3. Bouvier A., Vervoort J.D., Patchett P.J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273:48-57. 4. Bozhko N., Parfenova O., Kirmasov A., Clochko A. Metamorphic history and paleotectonics of Precambrian complexes in the eastern Baikal-Muya belt. Bull. Moscow University 1999, 2:9-18. 5. Bulgatov, A.N., 1988. Geological-geophysical model of the upper crust of Northern Transbaikal. Geologiya i Geofizika (Soviet Geology and Geophysics) 29 (9), 62-68 (54-58). 6. Bulgatov A.N., Gordienko I.V. Terranes of the Baikal mountain province and their gold mineralization. Geologiya Rudnykh Mestorozhdenii 1999, 41(3):230-240. 7. Cherniak D.J., Watson E.B. Pb diffusion in zircon. Chem. Geol. 2001, 172:5-24. 8. Doronina N.A., Sklyarov E.V. Eclogitic and granulitic metamorphism within the South Muya block. Doklady AN SSR 1995, 340(6):793-796. 9. Ellis D.G., Green D.H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol. 1979, 71:13-22. 10. Gerya T., Perchuk L.L., Burg J.-P. Transient hot channels: Perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts. Lithos 2008, 103:236-256. 11. Griffin W.L., Pearson N.J., Belousova E., Jackson S.E., van Achterberg E., O'Reilly S.Y., Shee S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64:133-147. 12. Griffin W.L., Wang X., Jackson S.E., Pearson N.J., O'Reilly S.Y., Xu X., Zhou X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2000, 61:237-269. 13. Grudinin M.I., Menshagin Yu.V. A find of garnet ultramafics and eclogites in the Archean South Muya block (Northern Baikal area). Dokl. Akad. Nauk SSR 1988, 299(2):434-437. 14. Grudinin, M.I., Mitrofanov, V.G., 1998. Position and composition of the Kedrovsky anorthosite-gabbro intrusion, in: Sizykh, A.I. (Ed.), Precambrian Complexes in East Siberia [in Russian]. Irkutsk, pp. 68-77. 15. Izokh A.E., Gibsher A., Zhuravlev D.Z., Balykin P.A. Sm-Nd data on the ages of mafic-ultramafic rocks in the eastern arm of the Baikal-Muya ophiolite belt. Dokl. Akad. Nauk SSR 1998, 360(1):88-92. 16. Kaulina V. Formation and Transformation of Zircons in Polymetamorphic Complexes [in Russian] 2010, KNC RAN, Apatity. 17. Kohn M.J., Spear F.S. Two new geobarometers for garnet amphibolites with applications to southeastern Vermont. Amer. Miner. 1990, 75:89-96. 18. Lan C.-Y., Tadashi U., Wang K.-L., Yui T.-F., Okamoto K., Lee C.-S., Tsutsumi Y., Yokoyama K., Hirata T., Kon Y., Orihashi Y., Horie K., Hidaka H., Liou J.G. Detrital zircon evidence for the antiquity of Taiwan. Geosci. J. 2009, 13:233-243. 19. Li Z.X., Li X.H., Kinny P.D., Wang J., Zhang S., Zhou H. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton. South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res. 2003, 122:85-109. 20. Li C., Arndt N.T., Tang Q., Ripley E.M. Trace element discrimination diagrams. Lithos 2015, 232:76-83. 21. Mekhonoshin, A., Bognibov, V.I., Lomonosova, E.I., 1993. Rare-earth elements and petrogenesis of ultrabasie-basite massifs in Southern Siberia. Geologiya i Geofizika (Russian Geology and Geophysics) 34 (2), 43-49 (39-46). 22. Nowell G.M., Kempton P.D., Noble S.R., Fitton J.G., Saunders A.D., Mahoney J.J., Taylor R.N. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chem. Geol. 1998, 149:211-233. 23. Pearce J.A., Cann J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett. 1973, 19:290-300. 24. Pearce J.A., Norry M.J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69:33-47. 25. Polyakov G.V., Tolstykh N.D., Mekhonoshin A., Izokh A.E., Podlipsky M.Yu., Orsoev D.A., Kolotilina B. Ultramafic-mafic igneous complexes of the Precambrian East Siberian metallogenic province (southern framing of the Siberian Craton): age, composition, origin, and ore potential Russian Geology and Geophysics (Geologiya i Geofizika) 54 (11), 1319-1331 (1689-1704) 2013. 26. Ravna E.G.K. The garnet-clinopyroxene geothermometer: an update calibration. J. Metamorph. Geol. 2000, 18:211-219. 27. Rytsk E.Yu., Kovach V.P., Kovalenko V.I., Yarmolyuk V.V. Structure and evolution of continental crust in the Baikal fold area. Geotektonika, No. 2007, 6:23-51. 28. Rytsk E.Yu., Kovach V.P., Yarmolyuk V.V., Kovalenko V.I., Bogomolov E., Kotov A.B. Isotopy and evolution of continental crust in the East Transbaikalian segment of the Central-Asian orogen. Geotektonika, No. 2011, 5:17-51. 29. Scherer E., Munker C., Mezger K. Calibration of the lutetium-hafnium clock. Science 2001, 293:683-687. 30. Shatskii V.S., Skuzovatov S.Yu., Ragozin A.L., Dril S.I. Evidence of Neoproterozoic continental subduction in the Baikal-Muya fold belt. Dokl. Earth Sci. 2014, 459(1):1442-1445. 31. Shatsky, V.S., Sitnikova, E.S., Tomilenko, A.A., Ragozin, A.L., Kozmenko, O.A., Iagoutz, E., 2012. Eclogite-gneiss complex of the Muya block (East Siberia): age, mineralogy, geochemistry, and petrology. Russian Geology and Geophysics (Geologiya i Geofizika) 53 (6), 501-521 (657-682). 32. Shatsky V.S., Malkovets V.G., Belousova E.A., Skuzovatov S.Yu. Evolution history of the Neoproterozoic eclogite-bearing complex of the Muya dome (Central Asian Orogenic Belt): constraints from zircon U-Pb age. Hf and whole-rock Nd isotopes. Precambrian Res. 2015, 261:1-11. 33. Tsygankov A.A. The Late Precambrian Magmatic History of the Baikal-Muya Volcanoplutonic Belt [in Russian] 2005, Izd. SO RAN, Novosibirsk. 34. Velikoslavinsky S.D., Glebovitsky V.A. A new discriminant diagram for classification of island-arc and continental basalts on the basis of petrochemical data. Dokl. Earth Sci. 2005, 401(2):308-310. 35. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95:185-187. 36. Winter J.D. An Introduction to Igneous and Metamorphic Petology 2001, Prentice Hall, New Jersey. 37. Wood D.A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet. Sci. Lett. 1980, 50:11-30.