Инд. авторы: Sessi P., Biswas R.R., Bathon T., Storz O., Wilfert S., Barla A., Kokh K.A., Tereshchenko O.E., Fauth K., Bode M., Balatsky A.V.
Заглавие: Dual nature of magnetic dopants and competing trends in topological insulators
Библ. ссылка: Sessi P., Biswas R.R., Bathon T., Storz O., Wilfert S., Barla A., Kokh K.A., Tereshchenko O.E., Fauth K., Bode M., Balatsky A.V. Dual nature of magnetic dopants and competing trends in topological insulators // Nature Communications. - 2016. - Vol.7. - Art.12027. - ISSN 2041-1723.
Внешние системы: DOI: 10.1038/ncomms12027; РИНЦ: 26836081; PubMed: 27345240; SCOPUS: 2-s2.0-84976585702; WoS: 000379110000001;
Реферат: eng: Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, that is, gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials.
Ключевые слова: SURFACE; DIRAC FERMION;
Издано: 2016
Физ. характеристика: 12027
Цитирование: 1. Qi, X.-L., Li, R., Zang, J. & Zhang, S.-C. Inducing a magnetic monopole with topological surface states. Science 232, 1184-1187 (2009). 2. Garate, I. & Franz, M. Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet. Phys. Rev. Lett. 104, 146802 (2010). 3. Chang, C.-Z. et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340, 167-170 (2013). 4. Chang, C.-Z. et al. High-precision realization of robust quantum anomalous hall state in a hard ferromagnetic topological insulator. Nat. Mater 14, 473-477 (2015). 5. Liu, Q., Liu, C.-X., Xu, C., Qi, X.-L. & Zhang, S.-C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009). 6. Biswas, R. R. & Balatsky, A. V. Impurity-induced states on the surface of threedimensional topological insulators. Phys. Rev. B 81, 233405 (2010). 7. Black-Schaffer, A. M. & Balatsky, A. V. Strong potential impurities on the surface of a topological insulator. Phys. Rev. B 85, 121103(R) (2012). 8. Zhu, J.-J., Yao, D.-X., Zhang, S.-C. & Chang, K. Electrically controllable surface magnetism on the surface of topological insulators. Phys. Rev. Lett. 106, 097201 (2011). 9. Chen, Y. L. et al. Massive dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659-662 (2010). 10. Xu, S.-Y. et al. Hedgehog spin texture and berry's phase tuning in a magnetic topological insulator. Nat. Phys 8, 616-622 (2012). 11. Valla, T., Pan, Z.-H., Gardner, D., Lee, Y. S. & Chu, S. Photoemission spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator. Phys. Rev. Lett. 108, 117601 (2012). 12. Scholz, M. R. et al. Tolerance of topological states towards magnetic moments: Fe on Bi2Se3. Phys. Rev. Lett. 108, 256810 (2012). 13. Schlenk, T. et al. Controllable magnetic doping of the surface state of a topological insulator. Phys. Rev. Lett. 110, 126804 (2013). 14. Hor, Y. S. et al. Development of ferromagnetism in the doped topological insulator Bi2-xMnxTe3. Phys. Rev. B 81, 195203 (2010). 15. Okada, Y. et al. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator. Phys. Rev. Lett. 106, 206805 (2011). 16. Beidenkopf, H. et al. Spatial fluctuations of helical dirac fermions on the surface of topological insulators. Nat. Phys 7, 939-943 (2011). 17. Yang, F. et al. Identifying magnetic anisotropy of the topological surface state of Cr0.05Sb1.95Te3 with spin polarized STM. Phys. Rev. Lett. 111, 176802 (2013). 18. Sessi, P. et al. Signatures of dirac fermion mediated magnetic order. Nat. Comm 5, 5349 (2014). 19. Black-Schaffer, A. M., Balatsky, A. V. & Fransson, J. Filling of magnetic - impurity-induced gap in topological insulators by potential scattering. Phys. Rev. B 91, 201411 (R) (2015). 20. Jiang, Y. et al. Fermi-level tuning of epitaxial Sb2Te3 thin films on graphene by regulating intrinsic defects and substrate transfer doping. Phys. Rev. Lett. 108, 066809 (2012). 21. Kachel, T., Eggenstein, F. & Follath, R. A soft x-ray plane-grating monochromator optimized for elliptical dipole radiation from modern sources. J. Synchrotron Rad 22, 1301-1305 (2015). 22. Gambardella, P. et al. Ferromagnetism in one-dimensional monoatomic metal chains. Nature 416, 301-304 (2002). 23. Sessi, P. et al. Scattering properties of the three-dimensional topological insulator Sb2Te3: coexistence of topologically trivial and nontrivial surface states with opposite spin-momentum helicity. Phys. Rev. B 93, 035110 (2016). 24. Alpichshev, Z. et al. STM imaging of impurity resonances on Bi2Se3. Phys. Rev. Lett. 108, 206402 (2012). 25. Wehling, T. O., Black-Schaffer, A. M. & Balatsky, A. V. Dirac materials. Adv. Phys 63, 1-76 (2014). 26. Jiang, Y. et al. Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3. Phys. Rev. Lett. 108, 016401 (2012). 27. Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924-927 (2009). 28. Das Sarma, S. & Pinczuk, A. Perspectives in Quantum Hall Effects (Wiley-VCH, 2004). 29. Kokh, K. A., Makarenko, S. V., Golyashov, V. A., Shegai, O. A. & Tereshchenko, O. E. Melt growth of bulk Bi2Te3 crystals with a natural p-n junction. CrystEngComm 16, 581-584 (2014).