Инд. авторы: Stepanov A.S., Rubatto D., Hermann J., Korsakov A.V.
Заглавие: Special collection: Advances in ultrahigh-pressure metamorphism: Contrasting P-T paths within the Barchi-Kol UHP terrain (Kokchetav Complex): Implications for subduction and exhumation of continental crust
Библ. ссылка: Stepanov A.S., Rubatto D., Hermann J., Korsakov A.V. Special collection: Advances in ultrahigh-pressure metamorphism: Contrasting P-T paths within the Barchi-Kol UHP terrain (Kokchetav Complex): Implications for subduction and exhumation of continental crust // American Mineralogist. - 2016. - Vol.101. - Iss. 4. - P.788-807. - ISSN 0003-004X. - EISSN 1945-3027.
Внешние системы: DOI: 10.2138/am-2016-5454; РИНЦ: 27152340; SCOPUS: 2-s2.0-84964931542; WoS: 000374626100025;
Реферат: eng: The Barchi-Kol terrain is a classic locality of ultrahigh-pressure (UHP) metamorphism within the Kokchetav metamorphic belt. We provide a detailed and systematic characterization of four metasedimentary samples using dominant mineral assemblages, mineral inclusions in zircon and monazite, garnet zonation with respect to major and trace elements, and Zr-in-rutile and Ti-in-zircon temperatures. A typical diamond-bearing gneiss records peak conditions of 49 ± 4 kbar and 950-1000°C. Near isothermal decompression of this rock resulted in the breakdown of phengite associated with a pervasive recrystallization of the rock. The same terrain also contains mica schists that experienced peak conditions close to those of the diamond-bearing rocks, but they were exhumed along a cooler path where phengite remained stable. In these rocks, major and trace element zoning in garnet has been completely equilibrated. A layered gneiss was metamorphosed at UHP conditions in the coesite field, but did not reach diamond-facies conditions (peak conditions: 30 kbar and 800-900°C). In this sample, garnet records retrograde zonation in major elements and also retains prograde zoning in trace elements. A garnet-kyanite-micaschist that reached significantly lower pressures (24 ± 2 kbar, 710 ± 20°C) contains garnet with major and trace element zoning. The diverse garnet zoning in samples that experienced different metamorphic conditions allows to establish that diffusional equilibration of rare earth element in garnet likely occurs at ∼900-950°C. Different metamorphic conditions in the four investigated samples are also documented in zircon trace element zonation and mineral inclusions in zircon and monazite. U-Pb geochronology of metamorphic zircon and monazite domains demonstrates that prograde (528-521 Ma), peak (528-522 Ma), and peak to retrograde metamorphism (503-532 Ma) occurred over a relatively short time interval that is indistinguishable from metamorphism of other UHP rocks within the Kokchetav metamorphic belt. Therefore, the assembly of rocks with contrasting P-T trajectories must have occurred in a single subduction-exhumation cycle, providing a snapshot of the thermal structure of a subducted continental margin prior to collision. The rocks were initially buried along a low geothermal gradient. At 20-25 kbar they underwent near isobaric heating of 200°C, which was followed by continued burial along a low geothermal gradient. Such a step-wise geotherm is in good agreement with predictions from subduction zone thermal models. © 2016 by Walter de Gruyter Berlin/Boston.
Ключевые слова: UHP; subduction; REE; Invited Centennial article; accessory minerals; metamorphic path;
Издано: 2016
Физ. характеристика: с.788-807
Цитирование: 1. Aleinikoff, J., Schenck, W., Plank, M., Srogi, L., Fanning, C., Kamo, S., and Bosbyshell, H. (2006) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geological Society of America Bulletin, 118, 39-64. 2. Anczkiewicz, R., Szczepanski, J., Mazur, S., Storey, C., Crowley, Q., Villa, I.M., Thirlwall, M.F., and Jeffries, T.E. (2007) Lu-Hf geochronology and trace element distribution in garnet: Implications for uplift and exhumation of ultra-high pressure granulites in the Sudetes, SW Poland. Lithos, 95, 363-380. 3. Auzanneau, E., Vielzeuf, D., and Schmidt, M.W. (2006) Experimental evidence of decompression melting during exhumation of subducted continental crust. Contributions to Mineralogy and Petrology, 152, 125-148. 4. Auzanneau, E., Schmidt, M.W., Vielzeuf, D., and Connolly, J.A.D. (2010) Titanium in phengite: a geobarometer for high temperature eclogites. Contributions to Mineralogy and Petrology, 159, 1-24. 5. Bebout, G., Ryan, J., Leeman, W., and Bebout, A. (1999) Fractionation of trace elements by subduction-zone metamorphism-effect of convergent-margin thermal evolution. Earth and Planetary Science Letters, 171, 63-81. 6. Black, L., Kamo, S., Allen, C., Aleinikoff, J., Davis, D., Korsch, R., and Foudoulis, C. (2003) TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200, 155-170. 7. Buslov, M.M., Ryabinin, A.B., Zhimulev, F.I., and Travin, A.V. (2009) Manifestations of the Late Carboniferous and Early Permian stages of formation of nappe-fold structures in the southern framework of the Siberian platform (East Sayany, South Siberia). Doklady Earth Sciences, 428, 1105-1108. 8. Buslov, M.M., Zhimulev, F.I., and Travin, A.V. (2010) New data on the structural setting and Ar-40/Ar-39 age of the MP-LP metamorphism of the Daulet formation, Kokchetav metamorphic belt, Northern Kazakhstan, and their tectonic interpretation. Doklady Earth Sciences, 434, 1147-1151. 9. Caddick, M.J., Konopásek, J., and Thompson, A.B. (2010) Preservation of Garnet Growth Zoning and the Duration of Prograde Metamorphism. Journal of Petrology, 51, 2327-2347. 10. Carlson, W.D. (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet. American Mineralogist, 97, 1598-1618. 11. Carswell, D., Cuthbert, S., and Ravna, E. (1999) Ultrahigh-pressure metamorphism in the Western Gneiss Region of the Norwegian Caledonides. International Geology Review, 41, 955-966. 12. Cartigny, P., De Corte, K., Shatsky, V., Ader, M., De Paepe, P., Sobolev, N., and Javoy, M. (2001) The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: a nitrogen and carbon isotopic study. Chemical Geology, 176, 265-281. 13. Cherniak, D.J., Watson, E.B., Grove, M., and Harrison, T.M. (2004) Pb diffusion in monazite: a combined RBS/SIMS study1. Geochimica et Cosmochimica Acta, 68, 829-840. 14. Chopin, C. (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth and Planetary Science Letters, 212, 1-14. 15. Claoue-Long, J., Sobolev, N., Shatsky, V., and Sobolev, A. (1991) Zircon response to diamond-pressure metamorphism in the Kokchetav massif, USSR. Geology, 19, 710-713. 16. Dobretsov, N., and Shatsky, V. (2004) Exhumation of high-pressure rocks of the Kokchetav massif: facts and models. Lithos, 78, 307-318. 17. Dobretsov, N.L., and Buslov, M.M. (2007) Late Cambrian-Ordovician tectonics and geodynamics of Central Asia. Russian Geology and Geophysics, 48, 71-82. 18. Dobretsov, N.L., Sobolev, N.V., Shatsky, V.S., Coleman, R.G., and Ernst, W.G. (1995) Geotectonic evolution of diamondiferous paragneisses of the Kokchetav Complex, Northern Kazakhstan-The geologic enigma of ultrahigh-pressure crustal rocks within Phanerozoic foldbelt. The Island Arc, 4, 267-279. 19. Dobretsov, N., Buslov, M., Zhimulev, F., Travin, A., and Zayachkovsky, A. (2006) Vendian-Early Ordovician geodynamic evolution and model for exhumation of ultrahighand high-pressure rocks from the Kokchetav subduction-collision zone (northern Kazakhstan). Russian Geology and Geophysics, 47, 424-440. 20. Dobrzhinetskaya, L., Braun, T., Sheshkel, G., and Podkuiko, Y. (1994) Geology and structure of diamond-bearing rocks of the Kokchetav massif (Kazakhstan). Tectonophysics, 233, 293-313. 21. Eggins, S.M., Rudnick, R.L., and McDonough, W.F. (1998) The composition of peridotites and their minerals: a laser-Ablation ICP-MS study. Earth and Planetary Science Letters, 154, 53-71. 22. Engvik, A., Austrheim, H., and Erambert, M. (2001) Interaction between fluid flow, fracturing and mineral growth during eclogitization, an example from the Sunnfjord area, Western Gneiss Region, Norway. Lithos, 57, 111-141. 23. Ewing, T.A., Hermann, J., and Rubatto, D. (2013) The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-Temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contributions to Mineralogy and Petrology, 165, 757-779. 24. Ferriss, E.D.A., Essene, E.J., and Becker, U. (2008) Computational study of the effect of pressure on the Ti-in-zircon geothermometer. European Journal of Mineralogy, 20, 745-755. 25. Ferry, J.M., and Watson, E.B. (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429-437. 26. Finger, F., and Krenn, E. (2007) Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos, 95, 103-115. 27. Forster, M.A., Lister, G.S., Compagnoni, R., Giles, D., Hills, Q., Betts, P., Beltrando, M., and Tamagno, E. (2004) Mapping of oceanic crust with HP to UHP metamorphism: The Lago di Cignana Unit, (Western Alps). In G. Pasquaré and C. Venturini, Eds., Mapping Geology in Italy pp. 279-288. SELCA, Firenze. 28. Gerya, T. (2011) Future directions in subduction modeling. Journal Of Geodynamics, 52, 344-378. 29. Glorie, S., Zhimulev, F.I., Buslov, M.M., Andersen, T., Plavsa, D., Izmer, A., Vanhaecke, F., and De Grave, J. (2015) Formation of the Kokchetav subduction-collision zone (northern Kazakhstan): Insights from zircon U-Pb and Lu-Hf isotope systematics. Gondwana Research. 30. Green, T., and Hellman, P. (1982) Fe-Mg partitioning between coexisting garnet and phengite at high-pressure, and comments on a garnet phengite geothermometer. Lithos, 15, 253-266. 31. Hermann, J. (2003) Experimental evidence for diamond-facies metamorphism in the Dora-Maira massif. Lithos, 70, 163-182. 32. Hermann, J., and Rubatto, D. (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of Metamorphic Geology, 21, 833-852. 33. Hermann, J., and Rubatto, D. (2014) Subduction of continental crust to mantle depth: Geochemistry of ultrahigh-pressure rocks. In H.D. Holland and K.K. Turekian, Eds., Treatise on Geochemistry, 2nd ed., pp. 309-340. Elsevier, Oxford. 34. Hermann, J., and Spandler, C.J. (2008) Sediment melts at sub-Arc depths: An experimental study. Journal of Petrology, 49, 717-740. 35. Hermann, J., Rubatto, D., Korsakov, A., and Shatsky, V.S. (2001) Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions in Mineralogy and Petrology, 141, 66-82. 36. Hodges, K., and Crowley, P. (1985) Error estimation and empirical geothermobarometry for pelitic systems. American Mineralogist, 70, 702-709. 37. Holloway, J.R., and Wood, B.J. (1988) Simulating the Earth-Experimental geochemistry. Springer. 38. John, T., and Schenk, V. (2003) Partial eclogitisation of gabbroic rocks in a late Precambrian subduction zone (Zambia): prograde metamorphism triggered by fluid infiltration. Contributions to Mineralogy and Petrology, 146, 174-191. 39. Kaneko, Y., Maruyama, S., Terabayashi, M., Yamamoto, H., Ishikawa, M., Anma, R., Parkinson, C.D., Ota, T., Nakajima, Y., Katayama, I., and others (2000) Geology of the Kokchetav UHP-HP metamorphic belt, Northern Kazakhstan. Island Arc, 9, 264-283. 40. Katayama, I., Zayachkovsky, A.A., and Maruyama, S. (2000) Prograde pressure-Temperature records from inclusions in zircons from ultrahigh-pressure-high-pressure rocks of the Kokchetav Massif, northern Kazakhstan. Island Arc, 9, 417-427. 41. Katayama, I., Maruyama, S., Parkinson, C., Terada, K., and Sano, Y. (2001) Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth and Planetary Science Letters, 188, 185-198. 42. Konrad-Schmolke, M., Zack, T., O Brien, P.J., and Jacob, D.E. (2008) Combined thermodynamic and rare earth element modelling of garnet growth during subduction: Examples from ultrahigh-pressure eclogite of the Western Gneiss Region, Norway. Earth and Planetary Science Letters, 272, 488-498. 43. Korsakov, A., Shatskii, V., and Sobolev, N. (1998) First occurrence of coesite in eclogites from Kokchetav massif. Doklady Akademii Nauk, 360, 77-81. 44. Korsakov, A.V., Shatsky, V.S., Sobolev, N.V., and Zayachokovsky, A.A. (2002) Garnet-biotite-clinozoisite gneiss: a new type of diamondiferous metamorphic rock from the Kokchetav Massif. European Journal of Mineralogy, 14, 915-928. 45. Korsakov, A.V., Theunissen, K., Kozmenko, O.A., and Ovchinnikov, Y.I. (2006) Reaction textures in clinozoisite gneisses. Russian Geology and Geophysics, 47, 497-510. 46. Korsakov, A.V., Perraki, M., Zhukov, V.P., De Gussem, K., Vandenabeele, P., and Tomilenko, A.A. (2009) Is quartz a potential indicator of ultrahigh-pressure metamorphism?. Laser Raman spectroscopy of quartz inclusions in ultrahigh-pressure garnets. European Journal of Mineralogy, 21, 1313-1323. 47. Kotková, J., and Harley, S.L. (2010) Anatexis during High-pressure Crustal Metamorphism: Evidence from Garnet-Whole-rock REE Relationships and Zircon-Rutile Ti-Zr Thermometry in Leucogranulites from the Bohemian Massif. Journal of Petrology, 51, 1967-2001. 48. Lavrova, L.D., Pechnikov, V.A., Petrova, M.A., and Zayachkovsky, A.A. (1996) Geology of the Barchi diamondiferous area. Otechestvennaya Geologiya, 12, 12-27. 49. Lee, J.K.W., Williams, I.S., and Ellis, D.J. (1997) Pb, U and Th diffusion in natural zircon. Nature, 390, 159-162. 50. Letnikov, F., Kostitsyn, Y., Vladykin, N., Zayachkovskii, A., and Mishina, E. (2004) Isotopic characteristics of the Krasnyi Mai ultramafic alkaline rock complex, northern Kazakhstan. Doklady Earth Sciences, 399A, 1315-1319. 51. Liou, J.G., Zhang, R.Y., Katayama, I., Maruyama, S., and Ernst, W. (2002) Petrotectonic characterization f the Kokchetav Massif and the Dabie-Sulu terranes Ultrahigh-P metamorphism in the so-called P-T Forbidden-Zone. Western Pacific Earth Sciences, 2, 119-148. 52. Liu, F., Xua, Z., Katayama, I., Yang, J., Maruyama, S., and Liou, J. (2001) Mineral inclusions in zircons of para-And orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos, 59, 199-215. 53. Liu, F., Xu, Z., Liou, J., Katayama, I., Masago, H., Maruyama, S., and Yang, J. (2002) Ultrahigh-pressure mineral inclusions in zircons from gneissic core samples of the Chinese Continental Scientific Drilling Site in eastern China. European Journal of Mineralogy, 14, 499-512. 54. Liu, F., Xu, Z., Liou, J.G., Dong, H., and Xue, H. (2007) Ultrahigh-pressure mineral assemblages in zircons from surface to 5158 m depth cores in the main drill hole of Chinese Continental Scientific Drilling Project, southwestern Sulu belt, China. International Geological Review, 49, 454-478. 55. Ludwig, K. (2003) User s manual for Isoplot 3.00. A geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California. 56. Masago, H. (2000) Metamorphic petrology of the Barchi-Kol metabasites, western Kokchetav ultrahigh-pressure-high-pressure massif, northern Kazakhstan. Island Arc, 9, 358-378. 57. Massonne, H. (2003) A comparison of the evolution of diamondiferous quartz-rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: are so-called diamondiferous gneisses magmatic rocks?. Earth and Planetary Science Letters, 216, 347-364. 58. Massonne, H.-J., Willner, A.P., and Gerya, T. (2007) Densities of metapelitic rocks at high to ultrahigh pressure conditions: What are the geodynamic consequences?. Earth and Planetary Science Letters, 256, 12-27. 59. McDonough, W., and Sun, S. (1995) The composition of the earth. Chemical Geology, 120, 223-253. 60. Nadolinny, V.A., Shatsky, V.S., Kozmenko, O.A., Stepanov, A.S., Palyanov, Y.N., and Kupriyanov, I.N. (2006) Study of local concentration of single substitutional nitrogen atoms in microdiamonds from the Kokchetav massif. European Journal of Mineralogy, 18, 739-743. 61. Norman, M., Griffin, W., Pearson, N., Garcia, M., and O Reilly, S. (1998) Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry, 13, 477-482. 62. Ogasawara, Y., Fukasawa, K., and Maruyama, S. (2002) Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American Mineralogist, 87, 454-461. 63. Parkinson, C. (2000) Coesite inclusions and prograde compositional zonation of garnet in whiteschist of the HP-UHPM Kokchetav massif, Kazakhstan: a record of progressive UHP metamorphism. Lithos, 52, 215-233. 64. Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., and Chenery, S.P. (1997) A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards Newsletter, 21, 115-144. 65. Peterman, E.M., Hacker, B.R., and Baxter, E.F. (2009) Phase transformations of continental crust during subduction and exhumation: Western Gneiss Region, Norway. European Journal of Mineralogy, 21, 1097-1118. 66. Plank, T., and Langmuir, C. (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145, 325-394. 67. Pyle, J.M., and Spear, F.S. (2000) An empirical garnet (YAG)-xenotime thermometer. Contributions to Mineralogy and Petrology, 138, 51-58. 68. Pyle, J., Spear, F.S., Rudnick, R., and Mcdonough, W.F. (2001) Monazite-Xenotime-Garnet Equilibrium in Metapelites and a New Monazite-Garnet Thermometer. Journal of Petrology, 42, 2083-2107. 69. Ragozin, A.L., Liou, J.G., Shatsky, V.S., and Sobolev, N.V. (2009) The timing of the retrograde partial melting in the Kumdy-Kol region (Kokchetav Massif, Northern Kazakhstan). Lithos, 109, 274-284. 70. Ravna, E., and Terry, M. (2004) Geothermobarometry of UHP and HP eclogites and schists-An evaluation of equilibria among garnet-clinopyroxene-kyanite-phengite-coesite/quartz. Journal of Metamorphic Geology, 22, 579-592. 71. Rozen, O. (1971) Rifean in the Kokchetav massif. Proceedings of USSR Academy of Science, 7, 102-104. 72. Rubatto, D. (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184, 123-138. 73. Rubatto, D., Williams, I.S., and Buick, I.S. (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and Petrology, 140, 458-468. 74. Rubatto, D., Hermann, J., and Buick, I.S. (2006) Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, central Australia). Journal of Petrology, 47, 1973-1996. 75. Schertl, H.-P., and Sobolev, N.V. (2013) The Kokchetav Massif, Kazakhstan: Type locality of diamond-bearing UHP metamorphic rocks. Journal of Asian Earth Sciences, 63, 5-38. 76. Shatsky, V.S., Jagoutz, E., Sobolev, N.V., Koz menko, O.A., Parkhomenko, V.S., and Troesch, M. (1999) Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). Contributions to Mineralogy and Petrology, 137, 185-205. 77. Shatsky, V.S., Sobolev, N.V., Korsakov, A.V., Ragozin, A.L., and Zayachkovsky, A.A. (2005) A new occurrence of diamondiferous rocks in Kokchetav massif (Northern Kazakhstan). Seventh International Eclogite Conference, Seggau, Austria, Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 150, 138. 78. Sitnikova, E.S., and Shatsky, V.S. (2009) New FTIR spectroscopy data on the composition of the medium of diamond crystallization in metamorphic rocks of the Kokchetav Massif. Russian Geology and Geophysics, 50, 842-849. 79. Sobolev, N., and Shatsky, V. (1990) Diamond inclusions in garnets from metamorphic rocks-A new environment for diamond formation. Nature, 343, 742-746. 80. Sobolev, N., Shatskii, V., Vavilov, M., and Goryainov, S. (1991) Coesite inclusion in zircon from diamond-containing gneisses of Kokchetav massif-1st find of coesite in metamorphic rocks in the USSR. Doklady Akademii Nauk SSSR, 321, 184-188. 81. Sobolev N. Shatskii V. Vavilov M. Goryainov S. (1994) Zircon from high-pressure metamorphic rocks of folded regions as an unique container of inclusions of diamond, coesite and coexisting minerals. Doklady Akademii Nauk, 334, 488-492. 82. Sobolev, N.V., Schertl, H.-P., Valley, J.W., Page, F.Z., Kita, N.T., Spicuzza, M.J., Neuser, R.D., and Logvinova, A.M. (2011) Oxygen isotope variations of garnets and clinopyroxenes in a layered diamondiferous calcsilicate rock from Kokchetav Massif, Kazakhstan: a window into the geochemical nature of deeply subducted UHPM rocks. Contributions to Mineralogy and Petrology, 162, 1079-1092. 83. Spear, F.S., and Pyle, J.M. (2010) Theoretical modeling of monazite growth in a low-Ca metapelite. Chemical Geology, 273, 111-119. 84. Stepanov, A.S., Hermann, J., Rubatto, D., and Rapp, R.P. (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology, 300-301, 200-220. 85. Stepanov, A.S., Hermann, J., Korsakov, A.V., and Rubatto, D. (2014) Geochemistry of ultrahigh-pressure anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond-facies conditions. Contributions to Mineralogy and Petrology, 167, 1-25. 86. Storre, B. (1972) Dry melting of muscovite+quartz in the range P s=7 kb to P s=20 kb. Contributions to Mineralogy and Petrology, 37, 87-89. 87. Syracuse, E.M., van Keken, P.E., and Abers, G.A. (2010) The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183, 73-90. 88. Tailby, N.D., Walker, A.M., Berry, A.J., Hermann, J., Evans, K.A., Mavrogenes, J.A., O Neill, H.St.C., Rodina, I.S., Soldatov, A.V., Rubatto, D., and others (2011) Ti site occupancy in zircon. Geochimica et Cosmochimica Acta, 75, 905-921. 89. Tirone, M., Ganguly, J., Dohmen, R., Langenhorst, F., Hervig, R., and Becker, H.-W. (2005) Rare earth diffusion kinetics in garnet: Experimental studies and applications. Geochimica et Cosmochimica Acta, 69, 2385-2398. 90. Tomkins, H.S., Powell, R., and Ellis, D.J. (2007) The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology, 25, 703-713. 91. Turkina, O.M., Letnikov, F.A., and Levin, A.V. (2011) Mesoproterozoic Granitoids of the Kokchetav Microcontinent Basement. Doklady Earth Sciences, 436, 176-180. 92. van Keken, P., Kiefer, B., and Peacock, S. (2002) High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochemistry Geophysics Geosystems, 3. 93. Van Orman, J., Grove, T., Shimizu, N., and Layne, G. (2002) Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contributions to Mineralogy and Petrology, 142, 416-424. 94. Vavilov, M.A., Sobolev, N.V., and Shatskiy, V.S. (1993) Micas in diamond-bearing metamorphic rocks of Northern Kazakhstan. Doklady. Earth Science Sections, 319 A, 177-182. 95. Wang, C.Y., Campbell, I.H., Stepanov, A.S., Allen, C.M., and Burtsev, I.N. (2011) Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers. Geochimica et Cosmochimica Acta, 75, 1308-1345. 96. Warren, C.J., Beaumont, C., and Jamieson, R.A. (2008) Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth and Planetary Science Letters, 267, 129-145. 97. Williams, I. (1998) U-Th-Pb geochronology by ion microprobe. In W.S.M. McKibben and W. Ridley, Eds., Applications of Microanalytical Techniques to Understanding Mineralizing Process, vol. 7, p. 1-36. Society of Economic Geologists, Inc. 98. Yang, P., and Pattison, D. (2006) Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota. Lithos, 88, 233-253. 99. Zhang, R., Liou, J., Ernst, W., Coleman, R., Sobolev, N., and Shatsky, V. (1997) Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav Massif, northern Kazakhstan. Journal of Metamorphic Geology, 15, 479-496. 100. Zheng, Y.-F., Gao, X.-Y., Chen, R.-X., and Gao, T. (2011) Zr-in-rutile thermometry of eclogite in the dabie orogen: constraints on rutile growth during continental subduction-zone metamorphism. Journal of Asian Earth Sciences, 40, 427-451. 101. Zhimulev, F.I. (2007) The Tectonics and Early Ordovician Geodynamic Evolution of the Kokchetav HP-UHP Metamorphic Belt. IGM SO RAN, Novosibirsk. 102. Zhimulev, F.I., Poltaranina, M.A., Korsakov, A.V., Buslov, M.M., Druzyaka, N.V., and Travin, A.V. (2010) Eclogites of the Late Cambrian-Early Ordovician North Kokchetav tectonic zone (northern Kazakhstan): structural position and petrology. Russian Geology and Geophysics, 51, 190-203. 103. Zhimulev, F.I., Buslov, M.M., Travin, A.V., Dmitrieva, N.V., and De Grave, J. (2011) Early-Middle Ordovician nappe tectonics of the junction between the Kokchetav HP-UHP metamorphic belt and the Stepnyak paleoisland arc (northern Kazakhstan). Russian Geology and Geophysics, 52, 109-123. 104. Zonenshain, L., Kuzmin, M., and Natapov, L. (1990) Geology of the USSR: a plate-Tectonic synthesis, 242 p. American Geophysical Union.