Инд. авторы: Myagkaya I.N., Lazareva E.V., Gustaytis M.A., Zhmodik S.M.
Заглавие: Gold and silver in a system of sulfide tailings. Part 2: Reprecipitation on natural peat
Библ. ссылка: Myagkaya I.N., Lazareva E.V., Gustaytis M.A., Zhmodik S.M. Gold and silver in a system of sulfide tailings. Part 2: Reprecipitation on natural peat // Journal of Geochemical Exploration. - 2016. - Vol.165. - P.8-22. - ISSN 0375-6742. - EISSN 1879-1689.
Внешние системы: DOI: 10.1016/j.gexplo.2016.01.016; РИНЦ: 27138991; SCOPUS: 2-s2.0-84961626208; WoS: 000375515000002;
Реферат: eng: More than eighty years of mining at the Novo-Ursk Au-bearing sulfide field (Kemerovo region, Russia) have produced a mixed natural-industrial system 'wastes-gold-bearing acid mine drainage (AMD) waters-peat'. The behavior of Au, Ag and related elements in the system 'wastes-AMD' is described in Part 1 of our study (Myagkaya et al. 2016) where we discuss interaction between the gold-bearing mine drainage waters and peat. This interaction leads to rapid accumulation of Ca, Fe, Mn, Ba, Cu, Zn, Se, Au, Ag, Hg, Pb to concentrations exceeding those in cyanidation wastes (especially, Cu, Zn, Se, Hg, and Pb). The contents of Au (about 5 ppm on average, locally as high as 155 ppm) and Ag (average about 11.2 ppm, locally up to 560 ppm) in peat are above the lowest economic values. These results provide clues to technologies for both generation of secondary gold (silver) deposits at existing or planned tailings and immobilization of toxic elements. Gold is accumulated in peat by a series of processes (reduction of ion gold to elemental form, sorption by complexation, biochemical reactions, etc.). This secondary gold is mostly chemically bound and invisible and a minor part is nanoparticulate (from tens of nm to 1.5-4 μm particles; with 7.5-53‰ Cu); it coexists with barite, secondary pyrite, tiemannite, Hg and Zn sulfides. Silver becomes redeposited in peat as silver-bearing sulfides and selenides. The presence of fossil bacterial fragments points to microbially mediated physicochemical processes leading to sulfide and gold mineralization by sulfate reduction and biosorption. Formation of abundant gold and mercury minerals may be due primarily to microbial activity. Peat in the area of the Ursk tailings is actually a prototype of coalbeds. Therefore, the mineralogical and geochemical patterns of gold and silver reprecipitation on organic matter, and the respective Au and Ag enrichment, provide insights into the early history of gold mineralization in coal. © 2016 Elsevier B.V.
Ключевые слова: Bacteria (microorganisms); Gold deposits; Physicochemical process; Mine-drainage water; Microbial activities; Gold Nanoparticles; Gold mineralization; Gold bearings; Geochemical patterns; Biochemical reactions; Zinc sulfide; Zinc; Sulfur compounds; Silver deposits; Selenium compounds; Peat; Mineralogy; Mercury (metal); Manganese; Gold; Drainage; Coal deposits; Peat; High-sulfide gold-bearing tailings; Gold nanoparticles; Sulfide minerals;
Издано: 2016
Физ. характеристика: с.8-22
Цитирование: 1. Al T.A., Leybourne M.I., Maprani A.C., MacQuarrie K.T., Dalziel J.A., Fox D., Yeats P.A. Effects of acid-sulfate weathering and cyanide-containing gold tailings on the transport and fate of mercury and other metals in Gossan Creek: Murray Brook mine, New Brunswick, Canada. Appl. Geochem. 2006, 21(11):1969-1985. 2. Alpers C.N., Blowes D.W., Nordstrom D.K., Jambor J.L. Secondary minerals and acid mine-water chemistry. Environmental geochemistry of sulfide mine-wastes. Waterloo, Ontario, Canada, Mineralogical Association of Canada, Short Course Series 1994, 22:247-270. J.L. Jambor, D.W. Blowes (Eds.). 3. Andrade W.O., Machesky M.L., Rose A.W. Gold distribution and mobility in the surficial environment, Carajas region, Brazil. J. Geochem. Explor. 1991, 40(1-3):95-114. 4. Arbuzov S.I., Rikhvanov L.P., Maslov S.G., Arhipov V.S., Belyaeva A.M. Anomalous gold contents in brown coals and peat in the south-eastern region of the Western-Siberian platform. Int. J. Coal Geol. 2006, 68(3):127-134. 5. Auld R.R., Myre M., Mykytczuk N.C.S., Leduc L.G., Merritt T.J.S. Characterization of the acid mine drainage microbial community using culturing and direct sequencing techniques. J. Microbiol. Methods 2013, 93(2):108-115. 6. Avramenko V.A., Bratskaya S.Y., Yakushevich A.S., Voit A.V., Ivannikov S.I., Ivanov V.V. Humic acids in brown coals from the southern Russian Far East: general characteristics and interactions with precious metals. Geochem. Int. 2012, 50(5):437-446. 7. Baker W.E. The role of humic acid in the transport of gold. Geochim. Cosmochim. Acta 1978, 42(6):645-649. 8. Baker B.J., Banfield J.F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 2003, 44(2):139-152. 9. Baranova N.N., Varshal G.M., Veliukhanova T.K. Complexation of natural organic substances and their role in the genesis of gold deposits. Geokhimiya 1991, 12:1799-1803. (in Russian). 10. Baruah M.K., Kotoky P., Borah G.C. Gold in high sulphur Indian coals. Fuel 1998, 77(15):1867-1868. 11. Belogub E.V. Supergene sulfide mineralization in the Southern Urals. Author's abstract. Doctor Thesis (Geology and Mineralogy) 2009, (40 pp. St-Petersburg. [in Russian]). 12. Belogub E.V., Novoselov C.A., Spiro B., Yakovleva B. Mineralogical and sulphur isotopic features of the supergene profile of Zapadno-Ozernoye massive sulphide and gold-bearing Gossan deposit, South Urals. Mineral. Mag. 2003, 67(2):339-354. 13. Belogub E.V., Novoselov K.A., Yakovleva V.A., Spiro B. Supergene sulphides and related minerals in the supergene profiles of VHMS deposits from the South Urals. Ore Geol. Rev. 2008, 33(3):239-254. 14. Benedetti M., Boulegue J. Mechanism of gold transfer and deposition in a supergene environment. Geochim. Cosmochim. Acta 1991, 55(6):1539-1547. 15. Bigham J.M. Mineralogy of ochre deposits formed by sulfide oxidation. Environmental geochemistry of sulfide mine-wastes. Waterloo, Ontario, Canada, Mineralogical Association of Canada, Short Course Series 1994, 22:103-132. J.L. Jambor, D.W. Blowes (Eds.). 16. Bigham J.M., Schwertmann U., Pfab G. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Appl. Geochem. 1996, 11(6):845-849. 17. Blinov I.A. Native metals, selenides, halogenides and brown ore associated minerals from the Amur and Verkhnyaya Arsha fields (Southern Urals). Lithosphere 2015, 1:65-74. (in Russian). 18. Blowes D.W., Ptacek C.J., Jambor J.L., Weisener C.G. The geochemistry of acid mine drainage. Reference Module in Earth Systems and Environmental Sciences from Treatise on Geochemistry 2003, 9:149-204. 19. Bobrov V.A., Bogush A.A., Leonova G.A., Anoshin G.N., Krasnobaev V.A. Anomalous concentrations of zinc and copper in highmoor peat bog, southeast coast of Lake Baikal. Dokl. Earth Sci. 2011, 439(2):1152-1156. 20. Bortnikova S.B., Airiyants A.A., Kolonin G.R., Lazareva E.V. Geochemistry and mineralogy of technogene deposits at the Salair mining and beneficiation works. Geochem. Int. 1996, 34(2):153-166. 21. Boulet M.P., Larocque A.C.L. A comparative mineralogical and geochemical study of sulfide mine tailings at two sites in New Mexico, USA. Environ. Geol. 1998, 33(2-3):130-142. 22. Bowell R.J. Supergene gold mineralogy at Ashanti, Ghana: implications for the supergene behavior of gold. Mineral. Mag. 1992, 56:545-560. 23. Bowell R.J., Foster R.P., Gize A.P. The mobility of gold in tropical rain forest soils. Econ. Geol. 1993, 88(5):999-1016. 24. Bowell R.J., Gize A.P., Foster R.P. The role of fulvic acid in the supergene migration of gold in tropical rain forest soils. Geochim. Cosmochim. Acta 1993, 57(17):4179-4190. 25. Brown P.A., Gill S.A., Allen S.J. Metal removal from wastewater using peat. Water Res. 2000, 34(16):3907-3916. 26. Brugger J., Etschmann B., Grosse C., Plumridge C., Kaminski J., Paterson D., Shar S.S., Ta C., Howard D.L., de Jonge M.D., Ball A.S., Reith F. Can biological toxicity drive the contrasting behavior of platinum and gold in surface environments?. Chem. Geol. 2013, 343:99-110. 27. Carbone s., Dinelli Ye., Marescotti P., Gasparotto G., Lucchetti G. The role of AMD secondary minerals in controlling environmental pollution: indications from bulk leaching tests. J. Geochem. Explor. 2013, 132:188-200. 28. Cidu R., Fanfani L., Shand P., Edmunds W.M. Gold mobility in waters from temperate regions. Water Rock Interaction. Proceedings of the 8th international symposium on WRI-8. Ed. Y. Kharaka and O.Chudaev. Balkema, Rotterdam. Brookfield. 15-19 August, 1995. Vladivostok, Russia 1995, 345-349. 29. Cook N.J., Chryssoulis S.L. Concentrations of invisible gold in the common sulfides. Can. Mineral. 1990, 28(1):1-16. 30. Craig P.J. Metal cycles and biological methylation. The natural environment and the biogeochemical cycles 1(A) 1980, 169-227. Springer, Berlin, Heidelberg. 31. Dai S., Ren D., Zhang J., Hou X. Concentrations and origins of platinum group elements in Late Paleozoic coals of China. Int. J. Coal Geol. 2003, 55(1):59-70. 32. Das S.K., Liang J., Schmidt M., Laffir F., Marsili E. Biomineralization mechanism of gold by zygomycete fungi Rhizopous oryzae. ACS Nano 2012, 6(7):6165-6173. 33. Descostes M., Vitorge P., Beaucaire C. Pyrite dissolution in acidic media. Geochim. Cosmochim. Acta 2004, 68(22):4559-4569. 34. Dill H.G. The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth Sci. Rev. 2001, 53(1-2):35-93. 35. Dold B., Fontbote L. A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, northern Chile. Chem. Geol. 2002, 189(3-4):135-163. 36. Dold B., Wade C., Fontbote L. Water management for acid mine drainage control at the polymetallic Zn-Pb-(Ag-Bi-Cu) deposit Cerro de Pasco, Peru. J. Geochem. Explor. 2009, 100(2-3):133-141. 37. Druschel G.K., Baker B.J., Gihring T.M., Banfield J.F. Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem. Trans. 2004, 5(2):13-32. 38. Dutova E.M., Bukaty M.B., Nevol'ko A.I., Pokrovsky D.S., Shvartsev S.L. Hydrogenic concentration of gold in alluvial placers of the Egor'evsk area (Salair). Russ. Geol. Geophys. 2006, 47(3):364-376. 39. Equeenuddin Sk.Md., Tripathy S., Sahoo P.K., Panigrahi M.K. Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, India. J. Geochem. Explor. 2010, 105(3):75-82. 40. Equeenuddin Sk.Md., Tripathy S., Sahoo P.K., Panigrahi M.K. Metal behavior in sediment associated with acid mine drainage stream: role of pH. J. Geochem. Explor. 2013, 124:230-237. 41. Fairbrother L., Brugger J., Shapter J., Laird J.S., Southam G., Reith F. Supergene gold transformation: biogenic secondary and nano-particulate gold from arid Australia. Chem. Geol. 2012, 320-321:17-31. 42. Gas'kova O.L., Bortnikova S.B., Shironosova G.P. Processes of chemical weathering of minerals in sulphide-containing tailing dumps: modelling of the composition of vadose water and secondary phases. Chem. Sustain. Dev. 2007, 15:329-342. 43. Gleisner M., Herbert R.B., Kockum P.C.F. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chem. Geol. 2006, 225(1-2):16-29. 44. Godovikov A.A. Mineralogy 1983, Nedra, Moscow, (645 pp. [in Russian]). 45. Gustaytis M.A., Lazareva E.V., Bogush A.A., Shuvaeva O.V., Shcherbakova I.N., Polyakova E.V., Badmaeva Zh.O., Anoshin G.N. Distribution of mercury and its species in the zone of sulphide tailing. Dokl. Earth Sci. 2010, 432(2):778-782. 46. Gustaytis M.A., Lazareva E.V., Myagkaya I.N., Bogush A.A., Shuvaeva O.V. Mercury species in solid matter of dispersion of the Ursk tailing dispersion train (Ursk village, Kemerovo region, Russia). 22-27 September, 2012. Rome, Italy. the International Conference on Heavy Metals in the Environment (16th ICHMET) Abstracts. The E3S Web of Conferences journal. EDP Sciences 1 2013, 19007-19011. 47. Herbel M.J., Blum J.S., Oremland R.S., Borglin S.E. Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol J. 2003, 20(6):587-602. 48. Hough R.M., Noble R.R.P., Reich M. Natural gold nanoparticles. Ore Geol. Rev. 2011, 42(1):55-61. 49. Ivanov V.V. Environmental geochemistry of elements: a handbook. 6 In the Book. Part 3: Rare P-elements 1996, Nedra, Moscow, (352 pp. [in Russian]). 50. Jambor J.L. Mineralogy of sulfide rich tailings and their oxidation products. Environmental geochemistry of sulfide mine-wastes. Waterloo, Ontario, Canada, Mineralogical Association of Canada, Short Course Series 1994, 22:59-102. J.L. Jambor, D.W. Blowes (Eds.). 51. Jiang S., Ho C.T., Lee J.H., Duong H.V., Han S., Hur H.G. Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200. Chemosphere 2012, 87(6):621-624. 52. Jung M.C. Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine, Korea. Appl. Geochem. 2001, 16(11-12):1369-1375. 53. Kalinin Yu.A., Kovalev K.R., Naumov E.A., Kirillov M.V. Gold in the weathering crust at the Suzdal' deposit (Kazakhstan). Russ. Geol. Geophys. 2009, 50(3):174-187. 54. Koivula M.P., Kujala K., Rönkkömäki H., Mäkelä M. Sorption of Pb (II), Cr (III), Cu (II), As (III) to peat, and utilization of the sorption properties in industrial waste landfill hydraulic barrier layers. J. Hazard. Mater. 2009, 164(1):345-352. 55. Korobushkina E.D., Korobushkin I.M. The role of microorganisms in the geochemistry of gold within the hypergenesis zone at the Darasun gold-sulfide deposit. Dokl. Earth Sci. 1998, 359A(3):457-459. 56. Kovalev K.R., Kalinin Yu.A, Naumov E.A., Kolesnikova M.K., Korolyuk V.N. Gold-bearing arsenopyrite in eastern Kazakhstan gold-sulfide deposits. Russ. Geol. Geophys. 2011, 52(2):178-192. 57. Kovalev S.I., Malikova I.N., Anoshin G.N., Badmaeva Zh.O., Stepin A.S. Global and local constituents of the atmospheric precipitation of mercury in the altai region. Dokl. Earth Sci. 1998, 363(8):1147-1149. 58. Kucha n. Dissolution and transport of gold by thiosulphates, Veitsch, Austria. Mineral. Mag. 1995, 59:253-258. 59. Kuimova N.G., Pavlova L.M., Sorokin A.P., Noskova L.P. Experimental modeling of gold concentration on peat. Lithosphere 2011, № 4. P.131-136. (in Russian). 60. Kuimova N.G., Pavlova L.M., Radomskaya V.I. Biogenic concentration of noble metals. Georesources. 2012. № 1 (12). С. 21-25. 61. Lailson-Brito J., Cruz R., Dorneles P.R., Andrade L., de Freitas Azevedo A., Bernadete Fragoso A., Gama Vidal L., Badini Costa M., Lemos Bisi T., Almeida R., Pires Carvalho D., Bastos W.R., Malm O. Mercury-selenium relationships in liver of guiana dolphin: the possible role of kupffer cells in the detoxification process by tiemannite formation. PLoS One 2012, 7(7):1-10. 62. Large R.R., Bull S.W., Maslennikov V.V. A carbonaceous sedimentary source rock model for Carlin type and orogenic gold deposits. Econ. Geol. 2011, 106:331-358. 63. Lawrance L.M., Griffin B.J. Crystal features of supergene gold at Hannan South, Western Australia. Mineral. Deposita 1994, 29(5):391-398. 64. Lazareva E.V., Tsimbalist V.G., Shuvaeva O.V. Arsenic speciation in the tailings impoundment of a gold recovery plant. Geochem. Explor. Environ. Anal. 2002, 2(3):263-268. 65. Lengke M.F., Southam G. The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex. Geochim. Cosmochim. Acta 2005, 69(15):3759-3772. 66. Lengke M.F., Southam G. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Geochim. Cosmochim. Acta 2006, 70(14):3646-3661. 67. Leybourne M.I., Goodfellow W.D., Boyle D.R., Hall G.E.M. Form and distribution of gold mobilized into surface waters and sediments from a gossan tailings pile, Murray Brook massive sulphide deposit, New Brunswick, Canada. Appl. Geochem. 2000, 15(5):629-646. 68. Lghoul M., Maqsoud A., Hakkou R., Kchikach A. Hydrogeochemical behavior around the abandoned Kettara mine site, Morocco. J. Geochem. Explor. 2014, 144(C):456-467. 69. Love L.G. Microorganisms and the presence of syngenetic pyrite. Q. J. Geol. Soc. Lond. 1957, 113:429-440. 70. Lusilao-Makiese J.G., Cukrowska E.M., Tessier E., Amouroux D., Weiersbye I. The impact of post gold mining on mercury pollution in the West Rand region, Gauteng, South Africa original research article. J. Geochem. Explor. 2013, 134:111-119. 71. Mann A.W. Mobility of gold and silver in lateritic weathering profiles: some observations from Western Australia. Econ. Geol. 1984, 79(1):38-49. 72. Marescotti P., Carbone C., Comodi P., Frondini F., Lucchetti G. Mineralogical and chemical evolution of ochreous precipitates from the libiola Fe-Cu-sulfide mine (Eastern Liguria, Italy). Appl. Geochem. 2012, 27(3):577-589. 73. Menchetti S., Sabelli C. Crystal chemistry of the alunite series: crystal structure refinement of alunite and synthetic jarosite. Neues Jb. Mineral. Monat. 1976, 9:406-417. 74. Methods of Measurements M-MVI-80-2008, FR.1.31.2004.01278 AES and AAS Determination of Weight Percentages of Elements in Soil and Bottom Sediment Samples 2008, (St-Petersburg. [in Russian]). 75. Methods of Measurements MVI NSAM N 130-S Flame AAS Determination of Silver in Rocks, Ores, and Processing Wastes 2006, (Moscow. [in Russian]). 76. Methods of Measurements MVI NSAM N 237-S Extraction AAS Determination with Organic Sulfides in Mineral Deposits of Different Compositions 2006, (Moscow. [in Russian]). 77. Mineralogy database webmineral Online under 2009, http://www.webmineral.com. 78. Mironov A.G., Almukhamedov A.I., Geletiy V.F., Gliuk D.S., Zhatnuev N.S., Zhmodik S.M., Konnikov E.G., Medvedev A.Ia., Plyusnin A.M. Experimental Studies of Gold Geochemistry Using Radiotracers 1989, Nauka, Novosibirsk, (281 pp. [in Russian]). 79. Murzin V.V., Oydup C.K., Varlamov D.A. A new find of Cu-Au alloy in association with rodingite minerals in the Kaa-Khem ophiolitic belt, Tuva. Geol. Ore Deposits 2009, 51(8):784-793. 80. Myagkaya I.N., Lazareva E.V., Gustaitis M.A., Zayakina S.B., Polyakova E.V., Zhmodik S.M. Gold in the sulfide waste-peat bog system as a behavior model in geological processes. Dokl. Earth Sci. 2013, 453(1):1132-1136. 81. Myagkaya I.N., Lazareva E.V., Gustaitis M.A., Zhmodik S.M. Gold and silver in a system of sulfide tailings. Part 1: migration in water flow. J. Geochem. Explor. 2016, 160:16-30. 82. Naumova O.B., Naumov V.A., Osovetskiy B.M., Lunyov B.S., Kovin N.O. Nanoforms of secondary gold in the tailing wastes: placers of Is River, Russia. Middle-East J. Sci. Res. 2013, 18(3):316-320. 83. Nemerov V.K., Stanevich A.M., Razvozzhaeva E.A., Budyak A.E., Kornilova T.A. Biogenic sedimentation factors of mineralization in the Neoproterozoic strata of the Baikal-Patom region. Russ. Geol. Geophys. 2010, 51(5):572-586. 84. Nordstrom D.K. Advances in the hydrogeochemistry and microbiology of acid minewaters. Int. Geol. Rev. 2000, 42(6):499-515. 85. Nordstrom D.K., Alpers C.N. Geochemistry of acid mine waters. The environmental geochemistry of mineral deposits. Reviews in Economic Geology 1999, 6:133-160. G.S. Plumlee, M.J. Logsdon (Eds.). 86. Novgorodova M.I. Nanocrystals of native gold and their intergrowths. New Data Miner. 2004, 39:83-93. 87. Novgorodova M.I., Tsepin A.I. About the phase composition of Cu-gold. Doklady Earth Sci. SSSR 1976, 227(1):184-187. 88. Ong A.L., Swanson V.E. Natural organic acids in the transportation, deposition and concentration of gold. Garterly Colo. Sch. Mine 1969, 64:395-425. 89. Orem W.H., Finkelman R.B. Coal formation and geochemistry. Treatise Geochem. 2003, 7:191-222. 90. van Os B.J., Middelburg J.J., de Lange G.J. Possible diagenetic mobilization of barium in sapropelic sediment from the eastern Mediterranean. Mar. Geol. 1991, 100(1-4):125-136. 91. Osovetsky B.M. Nanometer Surface Sculptures of Gold 2012, Perm State National Research University, Perm, (232 pp. [in Russian]). 92. Parviainen A., Mäkilä M., Loukola-Ruskeeniemi K. Premining acid rock drainage in the Talvivaara Ni-Cu-Zn-Co deposit (Finland): natural peat layers as a natural analog to constructed wetlands. J. Geochem. Explor. 2014, 143:84-95. 93. Peng G., Zhang Z., Wu D. The study status of correlation of peat with coal-forming environment. Adv. Earth Sci. 1999, 14(3):1-11. 94. Perelomov L.V., Perelomova I.V., Pinsky D.L. Molecular mechanisms of interaction between microelements and microorganisms in the complex biotic/abiotic systems (biosorption and bioaccumulation). Agrokhimiya 2013, 3:80-94. (in Russian). 95. Radomskaya V.I., Pavlova L.M., Noskova L.P., Ivanov V.V., Poselyuzhnaya A.V. Interactions of peat and its components with gold and palladium ions in aqueous solutions. Solid Fuel Chem. 2015, 49(3):156-166. 96. Radomskaya V.I., Radomskii S.M., Piskunov Yu.G., Kuimova N.G. Biogeochemistry of noble metals in water streams of the Amur River Basin. Geoekologiya 2005, 4:317-322. (in Russian). 97. Radomskii S.M., Radomskaya V.I., Moiseenko N.V., Moiseenko V.G. Nanoparticles of noble metals in peat of the Upper and Middle Amur Region. Dokl. Earth Sci. 2009, 426(1):620-622. 98. Ran Y., Fu J., Rate A.W., Gilkes R.J. Adsorption of Au(I, III) complexes on Fe, Mn oxides and humic acid. Chem. Geol. 2002, 185(1-2):33-49. 99. Rattray K.J., Taylor M.R., Bevan D.J.M., Pring A. Compositional segregation and solid solution in the lead-dominant alunite-type minerals from Broken Hill, N.S.W. Mineral. Mag. 1996, 60(402):779-785. 100. Reith F., McPhail D.C. Mobility and microbially mediated mobilization of gold and arsenic in soils from two gold mines in semi-arid and tropical Australia. Geochim. Cosmochim. Acta 2007, 71(5):1183-1196. 101. Reith F., Lengke M.F., Falconer D., Craw D., Southam G. The geomicrobiology of gold. ISME Winogradsky J. 2007, 1(7):567-584. 102. Reith F., Stewart L., Wakelin S.A. Supergene gold transformation: secondary and nano-particulate gold from southern New Zealand. Chem. Geol. 2012, 320-321:32-45. 103. Rieuwerts J.S., Mighanetara K., Braungardt C.B., Rollinson G.K., Pirrie D., Azizi F. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK. Sci. Total Environ. 2014, 472:226-234. 104. Ritchie A.I.M. Sulfide oxidation mechanisms: controls and rates of oxygen transport. Environmental geochemistry of sulfide mine-wastes. Waterloo, Ontario, Canada, Mineralogical Association of Canada, Short Course Series 1994, 22:201-246. J.L. Jambor, D.W. Blowes (Eds.). 105. Romanova T.E., Shuvaeva O.V., Belchenko L.A. Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing. Int. J. Phytorem. 2016, 18(2):190-194. 106. Roychoudhury A.N., Starke M.F. Partitioning and mobility of trace metals in the Blesbokspruit: impact assessment of dewatering of mine waters in the East Rand, South Africa. Appl. Geochem. 2006, 21(6):1044-1063. 107. Rozanov A.S., Bryanskaya A.V., Malup T.K., Meshcheryakova I.A., Lazareva E.V., Taran O.P., Ivanisenko T.V., Ivanisenko V.A., Zhmodik S.M., Kolchanov N.A., Peltek S.E. Molecular analysis of the Benthos Microbial Community in Zavarzin Thermal Spring (Uzon Caldera, Kamchatka, Russia). BMC Genomics 2014, 15(Suppl. 12):S12. 108. Sarkar D., Essington M.E., Mirsa K.C. Adsorption of mercury(II) by variable charge surface of quartz and gibbsite. Soil Sci. Soc. Am. J. 1999, 63(6):1626-1636. 109. Sarmiento A.M., DelValls A., Nieto J.M., Salamanca M.J., Caraballo M.A. Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain). Sci. Total Environ. 2011, 409(22):4763-4771. 110. Seal R.R., Hammarstrom J.M., Ritchie A.I.M. Geoenvironmental models of mineral deposits: examples from massive sulfide and gold deposits. Environmental aspects of mine wastes. Mineralogical Association Of Canada 2003, 31:11-50. J.L. Jambor, D.W. Blowes (Eds.). 111. Seredin V.V. Distribution and formation conditions of noble metal mineralization in coal-bearing basins. Geol. Ore Deposits 2007, 49(1):1-30. 112. Seredin V.V., Finkelman R.B. Metalliferous coals: a review of the main genetic and geochemical types. Int. J. Coal Geol. 2008, 76(4):253-289. 113. Sergeev N.B., Zaykov V.V., Laputina I.P., Trofimov O.V. Gold and silver in the supergene zone of the Gay sulfide field (S. Urals). Geol. Ore Deposits 1994, 36(2):169-183. (in Russian). 114. Shcherbakova I.N., Gustaitis M.A., Lazareva E.V., Bogush A.A. Migration of heavy metals (Cu, Pb, Zn, Fe, Cd) in the aureole of scattering at the Urskoye tailing dump (Kemerovo region). Chem. Sustain. Dev. 2010, 18:535-547. 115. Shuster J., Southam G. The in-vitro "growth" of gold grains. Geology 2015, 43(1):79-82. 116. Sobolewski A. A review of processes responsible for metal removal in wetlands treating contaminated mine drainage. Int. J. Phytorem. 1999, 1(1):19-51. 117. Sorokin A.P., Kuz'minykh V.M., Rozhdestvina V.I. Gold in brown coals: localization conditions, modes of occurrence, and methods of extracting. Dokl. Earth Sci. 2009, 424(1):109-113. 118. Sorokin A.P., Rozhdestvina V.I., Kuz'minykh V.M., Zhmodik S.M., Anoshin G.N., Mitkin V.N. The regularities of formation of noble-and raremetal mineralization in Cenozoic coaliferous deposits in the southern Far East. Russ. Geol. Geophys. 2013, 54(7):671-684. 119. Sorokin A.P., Rozhdestvina V.I., Kuzminykh V.M., Chanturiya A.V.A., Zhmodik S.M. Nonconventional types of noble-, raremetal, and rareearth mineralization in coal-bearing basins in the Far East. Dokl. Earth Sci. 2012, 446(2):1215-1219. 120. Southam G., Lengke M.F., Fairbrother L., Reith F. The biogeochemistry of gold. Elements 2009, 5(5):303-307. 121. Stoffregen R. Observations on the behavior of gold during supergene oxidation at Summitville, Colorado, U.S.A., and implications for electrum stability in the weathering environment. Appl. Geochem. 1986, 1(5):549-558. 122. Sun J., Tang C., Wu P., Strosnider W.H.J., Han Z. Hydrogeochemical characteristics of streams with and without acid mine drainage impacts: a paired catchment study in karst geology, SW China. J. Hydrol. 2013, 504:115-124. 123. Ta C., Reith F., Brugger J., Pring A., Lenehan C.E. Analysis of gold (I/III)-complexes by HPLC-ICP-MS demonstrates gold (III) stability in surface waters. Environ. Sci. Technol. 2014, 48(10):5737-5744. 124. Tauson V.L., Kravtsova R.G., Smagunov N.V., Spiridonov A.M., Grebenshchikova V.I., Budyak A.E. Structurally and superficially bound gold in pyrite from deposits of different genetic types. Russ. Geol. Geophys. 2014, 55(2):273-289. 125. Taylor S.R., McLennan S.M. The Continental Crust: Its Composition and Evolution 1985, Blackwell Scientific Publications, Oxford-Boston, (311 pp.). 126. Tossell J.A. The speciation of gold in aqueous solution: a theoretical study. Geochim. Cosmochim. Acta 1996, 60(1):17-29. 127. Tsimbalist V.G. Methods for determination of gold and silver in the geochemical researches: Guideline. The publication of the Institute of Geology and Geophysics SB AS USSR 1984, 53. Novosibirsk, in Russian. 128. Umysová D., Vítová M., Doušková I., Bišová K., Hlavová M., Zížková M., Machát J., Doucha J., Zachleder V. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol. 2009, 9(58):1-16. 129. Valente T.M., Gomes C.L. Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci. Total Environ. 2009, 407(3):1135-1152. 130. Varshal G.M., Veliukhanova T.K., Chkhetiya D.N., Kholin Yu.V., Shumskaya T.V., Tyutyunnik O.A., Koshcheeva I.Ya., Korochantsev A.V. Sorption on humic acids as a basis for the mechanism of primary accumulation of gold and platinum group elements in black shales. Lithol. Miner. Resour. 2000, 35(6):538-545. 131. Varshal G.M., Velyukhanova T.K., Korochantsev A.V., Tobelko K.I., Galuzinskaya A.Kh., Akhmanova M.V. The relation between the sorption capacity of the carbonaceous material in rocks for noble metals and its structure. Geochem. Int. 1996, 33(7):139-146. 132. Vasconcelos P., Kyle J.R. Supergene geochemistry and crystal morphology of gold in a semiarid weathering environment: application to gold exploration. J. Geochem. Explor. 1991, 40(1-3):115-132. 133. Vasil'ev V.I. New data on the composition of metacinnabar and Hg-sphalerite with an isomorphous Cd admixture. Russ. Geol. Geophys. 2011, 52(7):701-708. 134. Vlassopoulos D., Wood S.A. Gold speciation in natural waters: I. Solubility and hydrolysis reactions of gold in aqueous solution. Geochim. Cosmochim. Acta 1990, 54(1):3-12. 135. Vlassopoulos D., Wood S.A., Mucci A. Gold speciation in natural waters: II. The importance of organic complexation experiments with some simple model ligands. Geochim. Cosmochim. Acta 1990, 54(6):1575-1586. 136. Wang P., Huang Y., Wang C., Feng Z., Huang Q. Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 385:125-136. 137. Weber J.H., Evans R., Jones S.H., Hines M.E. Conversion of mercury (II) into mercury (0), monomethylmercury cation, and dimethylmercury in saltmarsh sediment slurries. Chemosphere 1998, 36(7):1669-1687. 138. Wilkin R.T., Barnes H.L. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 1997, 61(2):323-339. 139. Wood S.A. The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V). Ore Geol. Rev. 1996, 11(1-3):1-31. 140. Xia s. Associated sulfide minerals in thiosulfate leaching of gold: problems and solutions. A Thesis Submitted to the Department Of Mining Engineering in Conformity With the Requirements for the Degree of Doctor of Philosophy 2008, Queen's University Kingston, Ontario, Canada, (339 pp). 141. Xie X., Xiao S., Liu J. Microbial communities in acid mine drainage and their interaction with pyrite surface. Curr. Microbiol. 2009, 59(1):71-77. 142. Yin Y., Yu S., Liu J., Jiang G. Thermal and photoinduced reduction of ionic Au (III) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles. Environ. Sci. Technol. 2014, 48(5):2671-2679. 143. Zhmodik S.M., Kalinin Y.A., Roslyakov N.A., Belyanin D.K., Nemirovskaya N.A., Nesterenko G.V., Airiyants E.V., Moroz T.N., Bul'bak T.A., Mironov A.G., Mikhlin Y.L., Spiridonov A.M. Nanoparticles of noble metals in a supergene environment. Geol. Ore Deposits 2012, 54(2):141-154.