Инд. авторы: Urakaev F.K., Bulavchenko A.I., Uralbekov B.M., Massalimov I.A., Tatykayev B.B., Bolatov A.K., Dzharlykasimova D.N., Burkitbayev M.M.
Заглавие: Mechanochemical synthesis of colloidal sulfur particles in the Na2S2O3-H-2(C4H4O4)-Na2SO3 system
Библ. ссылка: Urakaev F.K., Bulavchenko A.I., Uralbekov B.M., Massalimov I.A., Tatykayev B.B., Bolatov A.K., Dzharlykasimova D.N., Burkitbayev M.M. Mechanochemical synthesis of colloidal sulfur particles in the Na2S2O3-H-2(C4H4O4)-Na2SO3 system // Colloid Journal. - 2016. - Vol.78. - Iss. 2. - P.210-219. - ISSN 1061-933X. - EISSN 1608-3067.
Внешние системы: DOI: 10.1134/S1061933X16020150; РИНЦ: 26989688; SCOPUS: 2-s2.0-84962639566; WoS: 000373666500009;
Реферат: eng: Elemental sulfur nanoparticles (nanosulfur, S (n) (0) ) have been obtained in a matrix consisting of sodium sulfite (diluent and a final reaction product) and succinic acid (catalyst) by mechanochemical syntheses via the reaction Na2S2O3 center dot 5H(2)O + H-2(C4H4O4) + zNa(2)SO(3) = (z + 1)Na2SO3 + H-2(C4H4O4) + 5H(2)O+ S (n) (0) , at z = 19.6. It has been shown that free nanodispersed sulfur can be obtained by dissolving the matrix in water. The prepared samples have been characterized using a set of physical and physicochemical methods.
Ключевые слова: MECHANISM; NANOPARTICLES; LITHIUM BATTERIES; ASPERGILLUS-NIGER; ANTIMICROBIAL AGENT; HOMOGENEOUS NUCLEATION; COMPOSITE CATHODE MATERIALS; SPECTRAL PROPERTIES; NUCLEI;
Издано: 2016
Физ. характеристика: с.210-219
Цитирование: 1. Kutney, G., Sulfur: History, Technology, Applications & Industry, Toronto ChemTec, 2013. 2. Sangalov, Yu.A., Karchevskii, S.G., and Telyashev, R.G., Elementnaya sera. Sostoyanie problemy i napravleniya razvitiya. Sera, vysokosernistye soedineniya i kompozitsii na ikh osnove (Elemental Sulfur. The State of Problem and Development Lines. Sulfur, High-Sulfur Compounds and Related Compositions), Ufa GUP INKhP Resp. Bashkortostan, 2010. 3. Schmid, G., Clusters and Colloids: From Theory to Applications, New York Wiley, 1994. 4. Liu, W.-T., J. Biosci. Bioeng., 2006, vol. 102, p. 1. 5. La Mer, V.K., Ind. Eng. Chem., 1952, vol. 44, p. 1270. 6. Barnes, M.D., Kenyon, A.S., Zaiser, E.M., and La Mer, V.K., J. Colloid Sci., 1947, vol. 2, p. 349. 7. Berne, B.J. and Pecora, R., Dynamic Light Scattering with Applications to Chemistry, Biology and Physics, New York Dover, 2000. 8. Kumar, R., Nair, K.K., Alam, M.I., Gogoi, R., Singh, P.K., Srivastava, C., Yadav, S., Gopal, M., Chaudhary, S.R., Pradhan, S., and Goswami, A., Curr. Sci., 2011, vol. 100, p. 1542. 9. Zheng, W., Liu, Y.W., Hu, X.G., and Zhang, C.F., Electrochim. Acta, 2006, vol. 51, p. 1330. 10. Lan, Y., Deng, B., Kim, C., Thornton, E.C., and Xu, H., Environ. Sci. Technol., 2005, vol. 39, p. 2087. 11. Bezverkhyy, I., Afanasiev, P., Marhic, C., and Danot, M., Chem. Mater., 2003, vol. 15, p. 2119. 12. Santiago, P., Carvajal, E., Mendoza, D.M., and Rendon, L., Microsc. Microanal., 2006, vol. 12, no. S02, p. 690. 13. Guo, Y., Zhao, J., Yang, S., Yu, K., Wang, Z., and Zhang, H., Powder Technol., 2006, vol. 162, p. 83. 14. Deshpande, A.S., Khomane, R.B., Vaidya, B.K., Joshi, R.M., Harle, A.S., and Kulkarni, B.D., Nanoscale Res. Lett., 2008, vol. 3, p. 221. 15. Xie, X.-Y., Zheng, W.-J., Bai, Y., and Liu, J., Mater. Lett., 2009, vol. 63, p. 1374. 16. Urakaev, F.Kh., Bazarov, L.Sh., Meshcheryakov, I.N., Feklistov, V.V., Drebushchak, T.N., Savintsev, Yu.P., Gordeeva, V.I., and Shevchenko, V.S., Colloid J., 1999, vol. 61, p. 647. 17. Valiulin, S.V., Karasev, V.V., Vosel’, S.V., and Onishchuk, A.A., Colloid J., 2013, vol. 75, p. 14. 18. Valiulin, S.V., Vosel’, S.V., Karasev, V.V., Onishchuk, A.A., Baklanov, A.M., and Purtov, P.A., Colloid J., 2014, vol. 76, p. 271. 19. Massalimov, I.A., Khusainov, A.N., Zainitdinova, R.M., Musavirova, L.R., Zaripova, L.R., and Mustafin, A.G., Russ. J. Appl. Chem., 2014, vol. 87, p. 700. 20. Suleiman, M., Ali, A.A., Hussein, A., Hammouti, B., Hadda, T.B., and Warad, I., J. Mater. Environ. Sci., 2013, vol. 4, p. 1029. 21. Choudhury, S. and Goswami, A., J. Appl. Microbiol., 2013, vol. 114, p. 1. 22. Choudhury, S., Mandal, A., Chakravorty, D., Gopal, M., and Goswami, A., J. Nanopart. Res., 2013, vol. 15. 23. Choudhury, S., Ghosh, M., Mandal, A., Chakravorty, D., Pal, M., Pradhan, S., and Goswami, A., Appl. Microbiol. Biotechnol., 2011, vol. 90, p. 733. 24. Nair, K.K., Siddiqi, W.A., Kumar, R., Niwas, R., Gogoi, R., Srivastava, C., and Gopal, M., J. Sep. Sci., 2014, vol. 37, p. 1126. 25. Choudhury, S., Mandal, A., Ghosh, M., Basu, S., Chakravorty, D., and Goswami, A., Appl. Microbiol. Biotechnol., 2013, vol. 97, p. 5965. 26. Wang, J.-Z., Lu, L., Choucair, M., Stride, J.A., Xu, X., and Liu, H.-K., J. Power Sources, 2011, vol. 196, p. 7030. 27. Chaudhuri, R.G. and Paria, S., J. Colloid Interface Sci., 2011, vol. 354, p. 563. 28. Xie, X.-F., Li, L.-Y., Zheng, P.-S., Zheng, W.-J., Bai, Y., Cheng, T.-F., and Liu, J., Mater. Res. Bull., 2012, vol. 47, p. 3665. 29. Chaudhuri, R.G. and Paria, S., J. Colloid Interface Sci., 2010, vol. 343, p. 439. 30. Shamsipur, M., Pourmortazavi, S.M., Roushani, M., Kohsari, I., and Hajimirsadeghi, S.S., Microkhim. Acta, 2011, vol. 173, p. 445. 31. Choudhury, S., Dey, K.K., Bera, S., and Goswami, A., J. Exp. Nanosci., 2013, vol. 8, p. 267. 32. Choudhury, S., Roy, S., Goswami, A., and Basu, S., J. Antimicrob. Chemother., 2012, vol. 67, p. 1134. 33. Turganbay, S., Aidarova, S.B., Bekturganova, N.E., Alimbekova, G.K., Musabekov, K.B., and Kumargalieva, S.S., Adv. Mater. Res., 2013, vols. 785—786, p. 475. 34. An, Y.-L., Nie, F., Wang, Z.-Y., and Zhang, D.-S., Int. J. Nanomed., 2011, vol. 6, p. 3187. 35. Rao, M., Song, X., and Cairns, E.J., J. Power Sources, 2012, vol. 205, p. 474. 36. Zhang, S.S., J. Power Sources, 2013, vol. 231, p. 153. 37. Zhang, Y., Zhao, Y., Konarov, A., Gosselink, D., Soboleski, H.G., and Chen, P., J. Power Sources, 2013, vol. 241, p. 517. 38. Urakaev, F.Kh., Int. J. Comput. Mater. Sci. Surf. Eng., 2011, vol. 4, p. 69. 39. Porras, I., Appl. Radiat. Isotopes, 2011, vol. 69, p. 1838. 40. Choudhury, S., Basu, A., Nag, T., Sengupta, K., Bhowmik, M., and Goswami, A., Environ. Toxicol. Pharmacol., 2013, vol. 36, p. 675. 41. Choudhury, S., Ghosh, M., and Goswami, A., Curr. Microbiol., 2012, vol. 65, p. 91. 42. Rao, K.J. and Paria, S., RSC Adv., 2013, vol. 3, p. 10471. 43. Massalimov, I.A., Medvedev, U.A., Zaynitdinova, R.M., Mufazalova, N.A., and Mustafin, A.G., Nanotechnol. Nanosci., 2012, vol. 3, p. 55. 44. Elesin, M.A., Pavlov, A.V., Berdov, G.I., Mashkin, N.A., and Oglezneva, I.M., Russ. J. Appl. Chem., 2002, vol. 75, p. 883. 45. Beben, D. and Manko, Z., Constr. Build. Mater., 2011, vol. 25, p. 282. 46. Massalimov, I.A., Yanakhmetov, M.R., Chuykin, A.E., and Mustafin, A.G., Study Civil Eng. Architect., 2013, vol. 2, p. 19. 47. Canas, N.A., Hirose, K., Pascucci, B., Wagner, N., Friedrich, K.A., and Hiesgen, R., Electrochim. Acta, 2013, vol. 97, p. 42. 48. Ghanemi, K., Nikpour, Y., Omidvar, O., and Maryamabadi, A., Talanta, 2011, vol. 85, p. 763. 49. Urakaev, F.Kh., Combust. Sci. Technol., 2013, vol. 185, p. 1281. 50. Urakaev, F.Kh., Int. J. Comput. Mater. Sci. Surf. Eng., 2011, vol. 4, p. 347. 51. Urakaev, F.Kh., Burkitbaev, M.M., Tatykaev, B.B., and Uralbekov, B.M., Colloid J., 2015, vol. 77, p. 641. 52. Urakaev, F.Kh., Drebushchak, T.N., Savintsev, Yu.P., and Drebushchak, V.A., Mendeleev Commun., 2003, vol. 13, p. 37. 53. Avvakumov, E., Senna, M., and Kosova, N., Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies, Boston Kluwer Academic, 2001. 54. Billik P., Čaplovičová M. Adv. Nanotechnol., 2012, vol. 8, p. 111. 55. Suleiman, M., Al-Masri, M., Al Ali, A., Aref, D., Hussein, A., Saadeddin, I., and Warad, I., J. Mater. Environ. Sci., 2015, vol. 6, p. 513.