Инд. авторы: Seryotkin Y.V.
Заглавие: Evolution of the bikitaite structure at high pressure: A single-crystal X-ray diffraction study
Библ. ссылка: Seryotkin Y.V. Evolution of the bikitaite structure at high pressure: A single-crystal X-ray diffraction study // Microporous and Mesoporous Materials. - 2016. - Vol.226. - P.415-423. - ISSN 1387-1811. - EISSN 1873-3093.
Внешние системы: WoS: 000456639300017; SCOPUS: 2-s2.0-85054297744; РИНЦ: 38646068; DOI: 10.1016/j.micromeso.2016.02.021; WoS: 000373419400049; SCOPUS: 2-s2.0-84959421851; РИНЦ: 26980017;
Реферат: eng: The structural evolution of natural bikitaite Li-2(H2O)(2)[Al2Si4O12], compressed in penetrating (water containing) medium up to 4 GPa, was studied using single-crystal X-ray diffraction data from a diamond anvil cell. A nearly isotropic compression of bikitaite up to 1.2 GPa proceeds through a slight decrease of the framework T-O-T angles. Further pressurizing leads to anisotropic compression: the compressibility of b-axis is half as smaller compared to c-axis, and the a-axis is the least compressible. The structure can be described as hexagonal sheets of six-membered rings parallel to (001), connected by pyroxene-like chains. Upon the compression, the hexagonal sheets approach each other, leading to the shortening of the c-parameter. The deformation of hexagonal sheets, reinforced by O-Li bonds, is defined by the corrugation of 6-membered rings. The deformation of more flexible pyroxene chains, responding to the deformation of hexagonal sheets, consists of axial rotation of tetrahedra with only minor change in T-O-T angles. The arrangement of extraframework species changed slightly. The system of H-bonds between water molecules remains intact upon pressurizing. At the same time, the formation of new H-bonds with framework O-atoms becomes possible above 2 GPa due to the shortening of the distances between O-w positions and framework O-atoms. All pressure-induced structural changes are completely reversible and the recovered crystal structure returns to its ambient structure. The results clearly demonstrate the absence of pressure-induced hydration in the bikitaite structure. The pressure-induced changes in the unit cell metrics are similar for bikitaite compressed in water containing medium, silicon oil, and glycerol. (C) 2016 Elsevier Inc. All rights reserved.
Ключевые слова: EDINGTONITE; COMPRESSIBILITY; WATER; OVER-HYDRATION; SELF-DIFFUSION; ZEOLITE BIKITAITE; NEUTRON-DIFFRACTION; SYNCHROTRON POWDER DIFFRACTION; Compressibility; High pressure; Crystal structure; Single-crystal X-ray diffraction; Bikitaite; Zeolite; ELASTIC BEHAVIOR; THOMSONITE;
Издано: 2016
Физ. характеристика: с.415-423
Цитирование: 1. I.A. Belitsky, B.A. Fursenko, S.P. Gabuda, O.V. Kholdeev, and Yu.V. Seryotkin Phys. Chem. Mineral. 18 1992 497 505 2. G.D. Gatta, and Y. Lee Mineral. Mag. 78 2014 267 291 3. Y. Lee, J.A. Hriljac, T. Vogt, J.B. Parise, and G. Artioli J. Am. Chem. Soc. 123 2001 12732 12733 4. Yu. Seryotkin, V.V. Bakakin, B.A. Fursenko, I.A. Belitsky, W. Joswig, and P.G. Radaelli Eur. J. Mineral. 17 2005 305 313 5. A.Yu. Likhacheva, Yu.V. Seryotkin, A.Yu. Manakov, A.I. Ancharov, M.A. Sheromov, and S.V. Goryainov Am. Mineral. 92 2007 1610 1615 6. A.Yu. Likhacheva, Yu.V. Seryotkin, A.Yu. Manakov, S.V. Goryainov, A.I. Ancharov, and M.A. Sheromov Z. Krist. Suppl. 26 2007 405 410 7. S.V. Rashchenko, Y.V. Seryotkin, and V.V. Bakakin Microporous Mesoporous Mater. 159 2012 126 131 8. S. Quartieri, G. Montagna, R. Arletti, and G. Vezzalini J. Solid State Chem. 184 2011 1505 1516 9. Y.V. Seryotkin Microporous Mesoporous Mater. 214 2015 127 135 10. G.D. Gatta, and Y. Lee Microporous Mesoporous Mater. 105 2007 239 250 11. Y. Lee, J.A. Hriljac, A. Studer, and T. Vogt Phys. Chem. Mineral. 31 2004 22 27 12. V.V. Bakakin, and Y.V. Seryotkin J. Struct. Chem. 50 2009 S116 S123 13. O. Ferro, S. Quartieri, G. Vezzalini, E. Fois, A. Gamba, and G. Tabacchi Am. Mineral. 87 2002 1415 1425 14. P. Comodi, G.D. Gatta, and P.F. Zanazzi Eur. J. Mineral. 15 2003 247 255 15. G. Sheldrick Acta Crystallogr. Sect. A Found. Crystallogr. A64 2008 112 122 16. R. Boehler Rev. Sci. Instrum. 77 2006 art. No. 115103 17. G.J. Piermarini, S. Block, J.D. Barnett, and R.A. Forman J. Appl. Phys. 46 1975 2774 2780 18. R.J. Angel J. Appl. Crystallogr. 37 2004 486 492 19. G. Bissert, F.N. Liebau, and N. Jb Mineral. Mh. 6 1986 241 252 20. G. Gottardi, and E. Galli Natural Zeolites 1985 Springer-Verlag Berlin 21. K. Ståhl, Å. Kvick, and S. Ghose Zeolites 9 1989 303 311 22. S. Quartieri, A. Sani, G. Vezzalini, E. Galli, E. Fois, A. Gamba, and G. Tabacchi Microporous Mesoporous Mater. 30 1999 77 87 23. R.J. Angel, J. Gonzalez-Platas, and M. Alvaro Z. Krist. 229 2014 405 419 24. S. Klotz, J.-C. Chervin, P. Munsch, and G. Le Marchand J. Phys. D 42 2009 075413 (7 pp) 25. G.D. Gatta, F. Nestola, and T.B. Ballaran Am. Mineral. 91 2006 568 578 26. T. Armbruster, and M.E. Gunter D.L. Bish, D.W. Ming, Reviews in Mineralogy & Geochemistry, Natural Zeolites vol. 45 2001 Miner. Soc. America Washington, DC 1 67 27. R. Arletti, L. Leardini, G. Vezzalini, S. Quartieri, L. Gigli, M. Santoro, J. Haines, J. Rouquette, and L. Konczewicz Phys. Chem. Chem. Phys. 17 2015 24262 24274 28. G.D. Gatta, and Y. Lee Phys. Chem. Miner. 32 2006 726 732 29. P. Lotti, G.D. Gatta, M. Merlini, and H.-P. Liermann Z. Krist. 230 2015 201 211 30. R. Arletti, G. Vezzalini, S. Quartieri, F. Di Renzo, and V. Dmitriev Microporous Mesoporous Mater. 191 2014 27 37 31. P. Lotti, R. Arletti, G.D. Gatta, S. Quartieri, G. Vezzalini, M. Merlini, V. Dmitriev, and M. Hanfland Microporous Mesoporous Mater. 218 2015 42 54 32. N.K. Moroz, E.V. Kholopov, I.A. Belitsky, and B.A. Fursenko Microporous Mesoporous Mater. 42 2001 113 119 33. R.M. Barrer, and B.E.F. Fender J. Phys. Chem. Solids 21 1961 12 24 34. K. Larsson, J. Tegenfeldt, and Å. Kvick J. Phys. Chem. Solids 50 1989 107 110