Инд. авторы: Tarasov N., Perego A.M., Churkin D.V., Staliunas K., Turitsyn S.K.
Заглавие: Mode-locking via dissipative Faraday instability
Библ. ссылка: Tarasov N., Perego A.M., Churkin D.V., Staliunas K., Turitsyn S.K. Mode-locking via dissipative Faraday instability // Nature Communications. - 2016. - Vol.7. - Art.12441. - ISSN 2041-1723.
Внешние системы: DOI: 10.1016/j.cam.2016.01.021; РИНЦ: 27141073; PubMed: 27503708; SCOPUS: 2-s2.0-84981734456; WoS: 000380954000001;
Реферат: eng: Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system - spectrally dependent losses - achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.
Ключевые слова: LASERS; PULSES; SYSTEMS; GENERATION; WAVE; FIBER; PATTERN-FORMATION; MODULATIONAL INSTABILITY; PROPAGATION; MEDIA;
Издано: 2016
Физ. характеристика: 12441
Цитирование: 1. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993) 2. Zakharov, V. E. & Ostrovsky, L. A. Modulation instability: the beginning. Phys. D 238, 540-548 (2009) 3. Benney, D. J. & Newell, A. C. The propagation of nonlinear wave envelopes. J. Math. Phys. 46, 133 (1967) 4. Zakharov, V. E. The instability of waves in nonlinear dispersive media. Sov. Phys. JETP 24, 740 (1967) 5. Bespalov, V. I. & Talanov, V. I. Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307 (1966) 6. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37 (1952) 7. Murray, J. D. Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, 2003) 8. Koch, A. J. & Meinhardt, H. Biological pattern formation: from basic mechanisms to complex structures. Rev. Mod. Phys. 66, 4 (1994) 9. Staliunas, K. & Sánchez-Morcillo, V. J. Transverse Patterns in Nonlinear Optical Resonators (Springer, 2003) 10. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209 (1987) 11. Staliunas, K. & Sánchez-Morcillo, V. J. Turing patterns in nonlinear optics. Opt. Commun. 177, 389-395 (2000) 12. Faraday, M. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. Lond. 121, 299-340 (1831) 13. Melo, F., Umbanhowar, P. & Swinney, H. Transition to parametric wave patterns in a vertically oscillated granular layer. Phys. Rev. Lett. 72, 172-175 (1994) 14. Petrov, V., Ouyang, Q. & Swinney, H. L. Resonant pattern formation in a chemical system. Nature 388, 655-657 (1997) 15. Staliunas, K., Longhi, S. & De Valcaŕcel, G. J. Faraday patterns in Bose-Einstein condensates. Phys. Rev. Lett. 89, 210406 (2002) 16. Engels, P., Atherton, C. & Hoefer, M. A. Observation of Faraday waves in a Bose-Einstein condensate. Phys. Rev. Lett. 98, 095301 (2007) 17. Abdullaev, F. K., Darmanyan, S. A., Bischoff, S. & Srensen, M. P. Modulational instability of electromagnetic waves in media with varying nonlinearity. J. Opt. Soc. Am. B 14, 27 (1997) 18. Conforti, M., Mussot, A., Kudlinski, A. & Trillo, S. Modulational instability in dispersion oscillating fiber ring cavities. Opt. Lett. 39, 4200-4203 (2014) 19. Perego, A. M., Tarasov, N., Churkin, D. V., Turitsyn, S. K. & Staliunas, K. Pattern generation by dissipative parametric instability. Phys. Rev. Lett. 116, 28701 (2016) 20. Staliunas, K., Hang, Chao & Konotop, V. V. Parametric patterns in optical fiber ring nonlinear resonators. Phys. Rev. A 88, 023846 (2013) 21. Copie, F., Conforti, M., Kudlinski, A., Mussot, A. & Trillo, S. Competing Turing and Faraday instabilities in longitudinally modulated passive resonators. Phys. Rev. Lett. 116, 143901 (2016) 22. Nakazawa, M., Suzuki, K. & Haus, H. A. The modulational instability laser. I. Experiment. IEEE J. Quantum Electron. 25, 2036-2044 (1989) 23. de Matos, C. J. S., Chestnut, D. A. & Taylor, J. R. Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train. Opt. Lett. 27, 915-917 (2002) 24. Set, S. Y., Yaguchi, H., Tanaka, Y. & Jablonski, M. Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Light. Technol. 22, 51-56 (2004) 25. Ippen, E. P., Eilenberger, D. J. & Dixon, R. W. Picosecond pulse generation by passive mode locking of diode lasers. Appl. Phys. Lett. 37, 267 (1980) 26. Fermann, M. E. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber. Opt. Lett. 18, 894 (1993) 27. Lariontsev, E. G. & Serkin, V. N. Possibility of using self-focusing for increasing contrast and narrowing of ultrashort light pulses. Sov. J. Quantum Electron. 5, 796-800 (1975) 28. Doran, N. J. & Wood, D. Nonlinear-optical loop mirror. Opt. Lett. 13, 56-58 (1988) 29. Turitsyn, S. K., Bale, B. & Fedoruk, M. P. Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 521, 135-203 (2012) 30. Agrawal, G. P. Nonlinear Fiber Optics 4th edn Ch. 8 (Academic, 2007) 31. Fermann, M. E., Kruglov, V. I., Thomsen, B. C., Dudley, J. M. & Harvey, J. D. Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 84, 6010-6013 (2000) 32. Mamyshev, P. V. in 24th Eur. Conf. Opt. Commun. ECOC 98 (IEEE Cat. No. 98TH8398) 1, 475-476 (1998) 33. Pitois, S., Finot, C., Provost, L. & Richardson, D. J. Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators. J. Opt. Soc. Am. B 25, 1537-1547 (2008)