Инд. авторы: Zhimulev E.I, Sonin V.M., Mironov A.M., Chepurov A.I.
Заглавие: Effect of Sulfur Concentration on Diamond Crystallization in the Fe-C-S System at 5.3-5.5 GPa and 1300-1370 degrees C
Библ. ссылка: Zhimulev E.I, Sonin V.M., Mironov A.M., Chepurov A.I. Effect of Sulfur Concentration on Diamond Crystallization in the Fe-C-S System at 5.3-5.5 GPa and 1300-1370 degrees C // Geochemistry International. - 2016. - Vol.54. - Iss. 5. - P.415-422. - ISSN 0016-7029. - EISSN 1531-8397.
Внешние системы: DOI: 10.1134/S0016702916050116; РИНЦ: 27096516; SCOPUS: 2-s2.0-84971612055; WoS: 000376612300003;
Реферат: eng: The paper presents results of experiments aimed at diamond synthesis in the Fe-C-S system at 5.3-5.5 GPa and temperatures of 1300-1370 degrees C and detailed data on the microtextures of the experimental samples and the composition of the accompanying phases (Fe3C and Fe7C3 carbides, graphite, and FeS). It is demonstrated that diamond can be synthesized after temperatures at which carbides are formed are overcome and can crystallize within the temperature range of 1300 degrees C (temperature of the peritectic reaction melt + diamond = Fe7C3) to 1370 degrees C (of thermodynamically stable graphite) under the appearance experimental pressure. The possible involvement of natural metal- and sulfur-bearing compounds in the origin of natural diamond is discussed.
Ключевые слова: graphite; sulfides; iron carbides; GENESIS; GRAPHITE; MELTS; INCLUSIONS; AFRICAN DIAMONDS; PHYSICAL-PROPERTIES; YAKUTIAN KIMBERLITES; EARTHS MANTLE; SULFIDE-CARBON; high temperature; high pressure; NI-S; diamond;
Издано: 2016
Физ. характеристика: с.415-422
Цитирование: 1. C. Ballhaus, “Is the upper mantle metal-saturated?” Earth Planet. Sci. Lett. 132, 75–86 (1995). 2. G. P. Bulanova, “The formation of diamond,” J. Geochem. Explor. 53, 1–23 (1995). 3. G. P. Bulanova, W. L. Griffin, and C. G. Ryan, “Nucleation environment of diamonds from Yakutian kimberlites,” Mineral. Mag. 62, 409–419 (1998). 4. G. P. Bulanova, Z. V. Spetsius, and N. V. Leskova, Sulfides in Diamonds and Xenolitjs from the Yakutian Kimberlite Pipes (Nauka, Novosibirsk, 1990) [in Russian]. 5. A. A. Chepurov, J. M. Dereppe, I. I. Fedorov, and A. I. Chepurov, “The change of Fe–Ni alloy inclusions in synthetic diamond crystals due to annealing,” Diamond Relat. Mater. 9, 1374–1379 (2000). 6. A. I. Chepurov, “Role of sulfide melt in natural diamond formation,” Geol. Geofiz. 29 (8), 119–124 (1988). 7. A. I. Chepurov, I. I. Fedorov, and V. M. Sonin, Experimental Modeling of Diamond Formation (SO RAN, NITs OIGGM, Novisibirsk, 1997) [in Russian]. 8. A. I. Chepurov, I. I. Fedorov, and V. M. Sonin, “Experimental studies of the diamond formation at high P,T-parameters (supplement to the model for natural diamond formation),” Geol. Geofiz. 39 (2), 234–244 (1998). 9. A. I. Chepurov, I. I. Fedorov, V. M. Sonin, A. M. Logvinova, and A. A. Chepurov, “Thermal effect on sulfide inclusions in diamonds (from experimental data),” Russ. Geol. Geophys. 49 (10), 738–742 (2008). 10. A. I. Chepurov, I. I. Fedorov, V. M. Sonin, and N. V. Sobolev, “Formation of diamond in the (Fe, Ni)–S–C–H system at high P-T conditions,” Dokl. Akad. Nauk 336 (2), 238–240 (1994). 11. A. I. Chepurov, E. I. Zhimulev, V. M. Sonin, A. A. Chepurov, and N. P. Pokhilenko, “Crystallization of diamond in metal–sulfide melts,” Dokl. Earth Sci. 428 (7), 1139–1141 (2009). 12. R. Dasgupta, A. Buono, G. Whelan, and D. Walker, “Highpressure melting relations in Fe–C–S systems: implications for formation, evolution, and structure of metallic cores in planetary bodies,” Geochim. Cosmochim. Acta 73, 6678–6691 (2009). 13. P. Deines and J. W. Harris, “Sulfide inclusions chemistry and carbon isotopes of African diamonds,” Geochim. Cosmochim. Acta 59, 3173–3188 (1995). 14. E. S. Efimova, N. V. Sobolev, and L. N. Pospelova, “Sulfide inclusions in diamonds and features of their paragenesis,” Zap. Vsesoyuz. Mineral. O-va 112 (3), 300–310 (1983). 15. I. I. Fedorov, A. I. Chepurov, A. A. Chepurov, and A. V. Kuroedov, “Estimation of the rate of postcrystallization self-purification of diamond from metal inclusions in the Earth’s mantle,” Geochem. Int. 43 (12), 1235–1239 (2005). 16. I. I. Fedorov, A. I. Chepurov, V. M. Sonin, A. A. Chepurov, and A. M. Logvinova, “Experimental and thermodynamic study of the crystallization of diamond and silicates in a metal–silicate–carbon system,” Geochem. Int. 46 (4), 340–350 (2008). 17. I. I. Fedorov, A. I. Chepurov, V. M. Sonin, and E. I. Zhimulev, “Experimental study of the effect of high pressure and high temperature on silicate and oxide inclusions in diamonds,” Geochem. Int. 43 (10), 1048–1052 (2006). 18. D. J. Frost and C. A. McCammon, “The redox state of the Earth’s mantle,” Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008). 19. V. K. Garanin and G. P. Kudryavtseva, “Morphology, physical properties and paragenesis of inclusion-bearing diamonds from Yakutian kimberlites,” Lithos 25, 211–217 (1990). 20. A. I. Gorshkov, Yan Nan Bao, L. V. Bershov, I. D. Ryabchikov, A. V. Sivtsov, and M. I. Lapina, “Inclusions of native metals and other minerals in diamond from Kimberlite Pipe 50, Liaoning, China,” Geochem. Int. 35 (8), 695–703 (1997). 21. S. E. Haggerty, “Diamond genesis in a multiply constrained model,” Nature 320, 34–38 (1986). 22. M. Hansen and K. Anderko, Constitution of the Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1958). 23. J. W. Harris and J. J. Gurney, “Inclusions in diamond,” in The properties of Diamond, Ed. by J. E. Field, (Academ. Press, London, 1979), pp. 554–591. 24. A. A. Kadik, “Oxygen fugacity regime in the upper mantle as a reflection of the chemical differentiation of planetary materials,” Geochem. Int. 1, 56–71 (2006). 25. C. S. Kennedy and G. C. Kennedy, “The equilibrium boundary between graphite and diamond,” J. Geophys. Res. 81, 2467–2470 (1976). 26. G. C. Kennedy, and B. N. Ryzhenko, “Effect of pressure on eutectics in the Fe–FeS system,” Geokhimiya 6, 796–801 (1985). 27. Yu. A. Kocherzhinskii, O. G. Kulik, V. Z. Turkevich, S. A. Ivakhnenko, G. V. Chipenko, E. S. Cherepnina, and A. S. Kryuchkova “Phase equilibria in the iron–carbon system at high pressures,” Sverkhtverd. Mater., No. 6, 3–9 (1992). 28. Yu. A. Kocherzhinskii, O. G. Kulik, and V. Z. Turkevich, “Phase equilibria in the Fe–Ni–C and Fe–Co–C systems under high temperatures and high pressures,” High Temp.-High Press. 25, 113–116 (1993). 29. Yu. A. Litvin, V. G. Butvina, A. V. Bobrov, and V. A. Zharikov, “The first synthesis of diamond in sulfide–carbon systems: the role of sulfides in diamond genesis,” Dokl. Earth Sci. 382 (1), 40–43 (2002). 30. Yu. A. Litvin and V. G. Butvina “Diamond-forming media in the system eclogite–carbonatite–sulfide–carbon: experiments at 6.0–8.5 GPa,” Petrology 12 (4), 377–387 (2004). 31. O. T. Lord, M. J. Walter, R. Dasgupta, D. Walker, and S. M. Clark, “Melting in the Fe–C system to 70 GPa,” Earth Planet. Sci. Lett. 284, 157–167 (2009). 32. P. C. Marx, “Pyrrotine and the origin of terrestrial diamonds,” Mineral. Mag. 38, 636–638 (1972). 33. H. O. A. Meyer, “Inclusions in diamond,” Mantle xenoliths, Ed. by P. H. Nixon (John Wiley and Sons Ltd., Chichester, 1987), pp. 501–533. 34. S. I. Mityukhin and Z. V. Spetsius, “Paragenesis of inclusions in diamonds from the Botuobinskya pipe, Nakyn Field, Yakutia,” Russ. Geol. Geophys. 46, 1225–1236 (2005). 35. Y. Nakajima, E. Takahashi, T. Suzuki, and K. Funakoshi, “Carbon in the core revisited,” Phys. Earth Planet. Inter. 174, 202–211 (2009). 36. Yu. N. Pal’yanov, Yu. M. Borzdov, Yu. V. Bataleva, A. G. Sokol, A. G. Pal’yanova, and I. N. Kupriyanov, “Reducing role of sulfides and diamond formation in the Earth’s mantle,” Earth Planet. Sci. Lett. 260, 242–256 (2007). 37. Yu. N. Pal’yanov, Yu. M. Borzdov, A. F. Khokhryakov, I. N. Kupriyanov, and N. V. Sobolev, “Sulfide melts–graphite interaction at HPHT conditions: implications for diamond genesis,” Earth Planet. Sci. Lett. 250, 269–280 (2006). 38. Yu. N. Pal’yanov, Yu. M. Borzdov, I. Yu. Ovchinnikov, and N. V. Sobolev, “Experimental study of the interaction between pentlandite melt and carbon at mantle PT parameters: condition of diamond and graphite crystallization,” Dokl. Earth Sci. 392 (7), 1026–1029 (2003). 39. A. Rohrbach, C. Ballhaus, U. Gola-Schindler, P. Ulmer, V. S. Kamenetsky, and D. V. Kuzmin, “Metal saturation in the upper mantle,” Nature 449, 456–458 (2007). 40. W. E. Sharp, “Pyrrhotite: a common inclusion in the South African diamonds,” Nature 211, 402–403 (1966). 41. L. E. Shterenberg, V. N. Slesarev, I. A. Korsunskaya, and D. S. Kamenetskaya, “The experimental study of the interaction between the melt, carbides and diamond in the iron-carbon system at high pressures,” High Temp. High Press. 7, 517–522 (1975). 42. A. V. Shushkanova and Yu. A. Litvin, “Diamond nucleation and growth in sulfide–carbon melts: an experimental study at 6.0–7.1 GPa,” Eur. J. Mineral. 20, 349–355 (2008). 43. A. V. Shushkanova and Yu. A. Litvin “Formation of diamond polycrystals in pyrrhotite–carbonic melt: experiments at 6.7 GPa,” Dokl. Earth Sci. 409A (6), 916–920 (2006). 44. N. V Sobolev, E. S. Efimova, and L. N. Pospelova, Native iron in Yakutian diamonds and its paragenesis, Geol. Geofiz. 22 (12), 25–29 (1981). 45. V. M. Sonin, A. I. Chepurov, I. I. Fedorov, and I. Yu. Malinovsky, “Minimum temperature of diamond synthesis in the metal–carbon systems,” Izv. Akad. Nauk SSSR, Ser. Neorgan. Mater. 24 (5), 743–746 (1988). 46. T. Stachel, J. W. Harris, and G. P. Brey, “Rare and unusual mineral inclusions in diamond from Mwadui, Tanzania,” Contrib. Mineral. Petrol. 132, 34–47 (1998). 47. V. Stagno and D. J. Frost, “Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages,” Earth Planet. Sci. Lett. 300, 72–84 (2010). 48. H. M. Strong and R. M. Chrenko, “Further studies on diamond growth rates and physical properties of laboratory–made diamond,” J. Phys. Chem. 75, 1838–1843 (1971). 49. T. Sugano, N. Ohashi, T. Tsurumi, and O. Fukunaga, “Pressure and temperature region of diamond formation in systems graphite and Fe containing alloy,” Diamond Relat. Mater. 5, 29–33 (1996). 50. L. A. Taylor and Y. Liu, “Sulfide inclusions in diamonds: not monosulfide solid solution,” Russ. Geol. Geophys. 50 (12), 1201–1211 (2009). 51. A. Tsuzuki, S. Sago, S-I. Hirano, and S. Naka, “High temperature and pressure preparation and properties of iron carbides Fe7C3 and Fe3C,” J. Mater. Sci. 19, 2513–2518 (1984). 52. L. B. Tsymbulov and L. Sh. Tsemekhman, “Solubility of carbon in sulfide melts of the system Fe–Ni–S,” Russ. J. Appl. Chem. 74, 925–929 (2001). 53. R. H. Wentorf, “Diamond formation at high pressure,” Adv. High Pressure Res. 4, 249–281 (1974). 54. E. I. Zhimulev, A. I. Chepurov, E. F. Sinyakova, V. M. Sonin, A. A. Chepurov, and N. P. Pokhilenko, “Diamond crystallization in the Fe–Co–S–C and Fe–Ni–S–C systems and the role of sulfide–metal melts in the genesis of siamond,” Geochem. Int. 50 (3), 205–216 (2012). 55. E. I. Zhimulev, M. A. Shein, and N. P. Pokhilenko, “Diamond crystallization in the Fe–S–C system,” Dokl. Earth Sci. 451 (1), 729–731 (2013). 56. A. A. Zhukov, L. E. Shterenberg, and V. A. Shalashow, “The iron-carbon system. New developments. I. The pseudohexagonal iron carbide Fe7C3 and the Fe3C–Fe7C3 eutectic,” Acta Metallur. 21, 195–199 (1973).