Инд. авторы: Vaseva I.A., Fedoruk M.P., Rubenchik A.M., Turitsyn S.K.
Заглавие: Light self-focusing in the atmosphere: Thin window model
Библ. ссылка: Vaseva I.A., Fedoruk M.P., Rubenchik A.M., Turitsyn S.K. Light self-focusing in the atmosphere: Thin window model // Scientific Reports. - 2016. - Vol.6. - Art.30697. - ISSN 2045-2322.
Внешние системы: DOI: 10.1038/srep30697; РИНЦ: 27143393; PubMed: 27480220; SCOPUS: 2-s2.0-84982718939; WoS: 000380634200001;
Реферат: eng: Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed 'thin window' model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing. © The Author(s) 2016.
Ключевые слова: PROPAGATION; FILAMENTATION; LASER;
Издано: 2016
Физ. характеристика: 30697
Цитирование: 1. Phipps, C. R., et al. Removing orbital debris with lasers. Adv. Space Res. 49, 1283-1300 (2012). 2. Campbell, J. (Ed.) Project ORION: orbital debris removal using ground-based sensors and lasers, NASA Marshall Spaceflight Center Technical Memorandum 108522 (1996b). 3. Rubenchik, A. M., Erlandson, A. C. & Liedahl, D. Laser system for space debris cleaning. AIP Conference Proceedings 1464, 448-453 (2012). 4. Rubenchik, A. M., Fedoruk, M. P. & Turitsyn, S. K. The effect of self-focusing on laser space-debris cleaning. Light Sci. Appl. 3, e159 (2014). 5. Marburger, J. H. Self-focusing: Theory. Prog. Quantum Electron. 4, 35-110 (1975). 6. Strohbehn, J. (ed) Laser Beam Propagation in the Atmosphere Berlin, Springer, (1978). 7. Zakharov, V. E. & Rubenchik, A. M. Instability of waveguides and solitons in nonlinear media. Sov. Phys. JETP 38, 494-500 (1974). 8. Fibich, G., Eisenmann, S., Ilan, B. & Zigler, A. Control of multiple filamentation in air. Opt. Lett. 29, 1772-1774 (2004). 9. Deng, H., Ji, X., Li, X. & Wang, X. Effect of spherical aberration on laser beam self-focusing in the atmosphere. Opt. Lett. 40, 3881-3884 (2015). 10. Self-focusing: Past and Present. Fundamentals and Prospects (eds Boyd, R. W., Lukishova, S. G. & Shen, Y. R.) (New York, Springer, 2009). 11. Kaplan, A. E. External self-focusing of light by a nonlinear layer. Radiophys. Quant. Electron. 12, 692-696 (1969). 12. Weaire, D., Wherrett, B. S., Miller, D. A. B. & Smith, S. D. Effect of low-power nonlinear refraction on laser-beam propagation in InSb. Opt. Lett. 4, 331-333 (1979). 13. Shen, Y. Principles of Nonlinear Optics (Wiley Interscience, New York, 1984). 14. Goodman, J. W. Introduction to Fourier Optics (McGraw Hill, New-York, 1968). 15. Rubenchik, A. M., Fedoruk, M. P. & Turitsyn, S. K. Laser beam self-focusing in the atmosphere. Phys. Rev. Lett. 102, 233902-233904 (2009). 16. Turitsyn, S. K., et al. Sub-critical regime of femtosecond inscription. Opt. Express 15, 14750-14764 (2007). 17. Frederick, G. Gebhardt, "High power laser propagation, " Appl. Opt. 15, 1479-1493 (1976) 18. Fleck Jr., J. A., Morris, J. R. & Feit, M. D. "Time-dependent propagation of high energy laser beams through the atmosphere", Applied physics 10, 129-160 (1976) 19. Quinn, M. N., et al. Space-based application of the CAN laser to LIDAR and orbital debris remediation. Eur. Phys. J. Special Topics 224, 2645-2655 (2015). 20. Dicaire, I., et al. Spaceborne laser filamentation for atmospheric remote sensing. Laser Photonics Rev. 10, No. 3, 481-493, doi: 10. 1002/lpor. 201500283] (2016). 21. Paasonen, V. I. & Fedoruk, M. P. A compact dissipative scheme for nonlinear Schrodinger equation. Computational technologies 16, 68-73, (in Russian) (2011). 22. Turitsyn, S. K., Bale, B. G. & Fedoruk, M. P. Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 521, 135-203 (2012).