Инд. авторы: Voropaeva O.F., Bobkova Y.V.
Заглавие: Numerical analysis of turbulence decay in momentumless wakes behind a sphere and a prolate body of revolution
Библ. ссылка: Voropaeva O.F., Bobkova Y.V. Numerical analysis of turbulence decay in momentumless wakes behind a sphere and a prolate body of revolution // Mathematical Models and Computer Simulations. - 2016. - Vol.8. - Iss. 4. - P.471-485. - ISSN 2070-0482. - EISSN 2070-0490.
Внешние системы: DOI: 10.1134/S2070048216040165; РИНЦ: 27058735; SCOPUS: 2-s2.0-84978472960;
Реферат: eng: The numerical analysis of the characteristics of a turbulent flow in momentumless wakes behind a sphere and a prolate body of revolution in a homogeneous and linearly stratified media is performed. The results of the numerical simulation based on modern second- and third-order models of turbulence agree with the known theoretical and experimental data. The proximity between these flows in a number of inherent properties, including the self-similar turbulence decay in the far wake in a homogeneous medium and the interrelation between the second and third invariants of the Reynolds stress tensor are shown. The problem of the interaction between two regions of turbulent perturbations forming on the motion of a sphere and a prolate body of revolution in a homogeneous medium is considered. © 2016, Pleiades Publishing, Ltd.
Ключевые слова: turbulent wake; semiempirical models; anisotropy of turbulence; numerical simulation; invariants;
Издано: 2016
Физ. характеристика: с.471-485
Цитирование: 1. S. B. Pope, Turbulent Flows (Cambridge Univ. Press, Cambridge, 2000). 2. J. Piquet, Turbulent Flows: Models and Physics (Springer, Berlin, Heidelberg, 1999). 3. P. Meunier and G. R. Spedding, “Stratified propelled wakes,” J. Fluid Mech. 552, 229–256 (2006). 4. M. B. de Stadler and S. Sarkar, “Simulation of a propelled wake with moderate excess momentum in a stratified fluid,” J. Fluid Mech. 692, 28–52 (2012). 5. O. F. Voropaeva, O. A. Druzhinin, and G. G. Chernykh, “Numerical models of momentumless turbulent wake dynamics in a linearly stratified medium,” Vychislit. Tekhnol. 18 (5), 41–57 (2013). 6. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. 1: Mechanics of Turbulence (Gidrometeoizdat, St. Petersburg, 1992; MIT, Cambridge, MA, 1971). 7. J. T. Pao and Y. H. Lin, “Wakes in stratified fluids,” Ann. Rev. Fluid Mech. 11, 317–336 (1979). 8. N. V. Aleksenko and V. A. Kostomakha, “Experimental study of an axisymmetric nonimpulsive turbulent jet,” J. Appl. Mech. Tech. Phys. 28, 60–64 (1987). 9. G. G. Chernykh and O. F. Voropayeva, “Numerical modeling of momentumless turbulent wake dynamics in a linearly stratified medium,” Comput. Fluids 28, 281–306 (1999). 10. O. F. Voropaeva, “Anisotropic turbulence decay in a far momentumless wake in a stratified medium,” Math. Models Comput. Simul. 1, 605–619 (2009). 11. O. F. Vasil’ev, O. F. Voropaeva, and G. G. Chernykh, “Numerical modeling of anisotropic decay of a distant turbulent wake behind a self-propelled body in a linearly stratified medium,” Dokl. Phys. 54, 301–305 (2009). 12. G. G. Chernykh and A. G. Demenkov, “Numerical models of jet flows of a viscous incompressible fluid,” Russ. J. Numer. Anal. Math. Model. 12, 111–125 (1997). 13. O. F. Voropaeva, “Numerical modeling of momentumless turbulent wakes behind sphere,” Vychisl. Tekhnol. 6 (4), 188–194 (2001). 14. O. F. Voropaeva, “The numerical investigation of momentumless turbulent wakes behind sphere based on semiempirical turbulence models of second order,” Vychisl. Tekhnol. 7 (2), 11–23 (2002). 15. O. F. Voropayeva, “Dynamics of a far momentumless turbulent wake in passively stratified media,” Russ. J. Numer. Anal. Math. Model. 19, 83–102 (2004). 16. O. F. Voropaeva, “The hierarchy of semi-empirical turbulence models of second and third order in calculations of momentumless wakes behind bodies of revolution,” Mat. Model. 19 (3), 29–51 (2007). 17. V. Maderich and S. Konstantinov, “Asymptotic and numerical analysis of momentumless turbulent wakes,” Fluid Dyn. Res. 42, 045503-1–25 (2010). 18. O. V. Kaptsov and A. V. Schmidt, “Application of the B-determining equations method to one problem of free turbulence,” SIGMA 8, 073 (2012). 19. Prediction Methods for Turbulent Flows, Ed. by W. Kollmann (Hemisphere, Washington, 1980; Mir, Moscow, 1984). 20. B. B. Ilyushin, “Higher-moment diffusion in stable stratification,” in Closure Strategies for Turbulent and Transition Flows (Cambridge Univ. Press, Cambridge, 2002), pp. 424–448. 21. O. F. Voropaeva, N. P. Moshkin, and G. G. Chernykh, “Internal waves generated by turbulent wakes behind towed and self-propelled bodies in linearly stratified fluid,” Mat. Model. 12 (10), 77–94 (2000). 22. S. Hassid, “Collapse of turbulent wakes in stably stratified media,” J. Hydronaut. 14, 25–32 (1980).