Цитирование: | 1. V. N. Ostrikov, O. V. Plakhotnikov, and A. V. Kirienko, “Processing of Hyperspectral Data Obtained from Aviation and Space Carriers,” Sovr. Probl. Dist. Zond. Zemli iz Kosmosa 10 (2), 243–251 (2013).
2. T. H. Chan, A. Ambikapathi, W. K. Ma, and C. Y. Chi, “Robust Affine Set Fitting and Fast Simplex Volume Max-Min for Hyperspectral Endmember Extraction,” IEEE Trans. Geosci. Remote Sensing 51 (7), 3982–3997 (2013).
3. K. Cawse-Nicholson, S. B. Damelin, A. Robin, and M. Sears, “Determining the Intrinsic Dimension of a Hyperspectral Image Using Random Matrix Theory,” IEEE Trans. Image Process. 22 (4), 1301–1310 (2013).
4. S. M. Borzov, A. O. Potaturkin, and O. I. Potaturkin, “Change Detection in Build-up Areas on the Basis of Structural Features of Satellite Images,” Avtometriya 51 (4), 3–11 (2015) [Optoelectron., Instrum. Data Process. 51 (4), 321–328 (2015)].
5. S. M. Borzov and O. I. Potaturkin, “Classification of Vegetation Types on the Basis of Hyperspectral Data of Remote Sensing,” Vestnik NGU, Ser. Inform. Tekhnol., No. 4, 13–22 (2014).
6. O. I. Potaturkin, S. M. Borzov, A. O. Potaturkin, and S. B. Uzilov, “Methods and Technologies of Processing of High-Resolution Multi- and Hyperspectral Data of Remote Sensing,” Vych. Tekhnol. 18 (special issue), 53–60 (2013).
7. F. A. Kruse, A. B. Lefkoff, J. B. Boardman, et al., “The Spectral Image Processing System (SIPS) — Interactive Visualization and Analysis of Imaging Spectrometer Data,” Remote Sensing of Environment 44 (2–3), 145–163 (1993).
8. H. Du, C. Chang, H. Ren, et al., “New Hyperspectral Discrimination Measure for Spectral Characterization,” Opt. Eng. 43 (8), 1777–1786 (2004).
9. T. Joachims, “Making Large-Scale Support Vector Machine Learning Practical,” in Advances in Kernel Methods — Support Vector Learning, Eds. by B. Schoelkopf, C. J. C. Burges, and A. J. Smola (MIT Press, Cambridge, USA, 1999, pp. 169–184).
10. J. A. Richards, Remote Sensing Digital Image Analysis (Springer-Verlag, Berlin, 2013, 494 pp.).
11. A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal,” IEEE Trans. Geosci. Remote Sensing 26 (1), 65–74 (1988).
12. A. Plaza, J. A. Benediktsson, J. W. Boardman, et al., “Recent Advances in Techniques for Hyperspectral Image Processing,” Remote Sensing of Environment 113 (Suppl. 1), 110–122 (2009).
13. V. G. Bondur, “Modern Approaches to Processing Large Fluxes of Hyperspectral and Multispectral Aerospace Information,” Issled. Zemli iz Kosmosa, No. 1, 4–16 (2014).
14. C. Chen, W. Li, E. W. Tramel, et al., “Spectral-Spatial Preprocessing Using Multihypothesis Prediction for Noise-Robust Hyperspectral Image Classification,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7 (4), 1047–1059 (2014).
|