Инд. авторы: Kovenya V.M., Kudryashov A.S.
Заглавие: A factorization method for numerical solution of the Navier–Stokes equations for a viscous incompressible liquid
Библ. ссылка: Kovenya V.M., Kudryashov A.S. A factorization method for numerical solution of the Navier–Stokes equations for a viscous incompressible liquid // Journal of Applied and Industrial Mathematics. - 2016. - Vol.10. - Iss. 2. - P.232-242. - ISSN 1990-4789. - EISSN 1990-4797.
Внешние системы: DOI: 10.1134/S1990478916020083; РИНЦ: 27159813; SCOPUS: 2-s2.0-84971254418;
Реферат: eng: Some implicit difference scheme of approximate factorization is proposed for numerical solution of the Navier–Stokes equations for an incompressible liquid in curvilinear coordinates. Testing of the algorithm is carried out on the solution of the problems concerning the Couette and Poiseuille flows; and the results are presented of numerical simulation of a flow between the rotating cylinders with covers. © 2016, Pleiades Publishing, Ltd.
Ключевые слова: splitting method; Navier–Stokes equations; incompressible fluid; difference scheme;
Издано: 2016
Физ. характеристика: с.232-242
Цитирование: 1. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1978; Pergamon Press, Oxford, 1966). 2. O. A. Ladyzhenskaya, TheMathematical Theory of Viscous Incompressible Flow (Nauka, Moscow, 1970; Gordon and Breach, New York, 1969). 3. N. N. Yanenko, The Method of Fractional Steps. The Solution of Problems of Mathematical Physics in Several Variables (Nauka, Novosibirsk, 1967; Springer, Berlin, 1971). 4. A. Chorin, “Numerical Solution of Navier–Stokes Equations,” Math. Comp. 22 (7), 745–762 (1968). 5. P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, NM, 1982; Mir, Moscow, 1980). 6. R. Peyret and Th. D. Taylor, Computational Methods for Fluid Flow (Springer, Berlin, 1983; Gidrometeoizdat, Leningrad, 1986). 7. A. A. Amsden and F. N. Harlow, The SMACMethod, Rep. NLA–4370 (Los Alamos Sci. Lab., Los Alamos, 1970). 8. E. L. Tarunin, Nonlinear Problems of Heat Convection. Selected Works (Izd. Perm. Gos. Univ., Perm’, 2002) [in Russian]. 9. A. A. Tolstykh, Compact Difference Schemes and Their Applications in Hydrodynamics Problems (Nauka, Moscow, 1996) [in Russian]. 10. O. M. Belotserkovskii, V. A. Gushchin, V. V. Shchennikov, “Use of the Splitting Method to Solve Problems of the Dynamics of a Viscous Incompressible Fluid,” Zh. Vychisl. Mat. i Mat. Fiz. 15 (1), 197–207 (1975) [USSR Comput. Math. and Math. Phys. 15 (1), 190–200 (1975)]. 11. A. A. Samarskii and P. N. Vabishchevich, Additive Schemes for Problems of Mathematical Physics (Nauka, Moscow, 1999) [in Russian]. 12. Ch H. Bruneau and C. Jouron, “An Efficient Scheme for Solving Steady Incompressible Navier–Stokes Equations,” J. Comput. Phys. 89 (2), 389–413 (1990). 13. T. Kavamura, H. Takami, and K. Kuwahara, New Higher-Order Upwind Scheme for Incompressible Navier–Stokes Equations (Springer, New York, 1985). 14. P. N. Vabishchevich, “Additive Schemes for Some Differential-Operator Equations,” Zh. Vychisl. Mat. iMat. Fiz. 50 (12), 2144–2154 (2010) [Comput. Math. and Math. Phys. 50 (12), 2033–2043 (2010)]. 15. S. G. Chernyi, D. V. Chirkov, V. N. Lapin, V. A. Skorospelov, and S. V. Sharov, Computational Modeling of Flows in Turbomachines (Nauka, Novosibirsk, 2006) [in Russian]. 16. V. M. Kovenya and N. N. Yanenko, Splitting Method in Problems of Gas Dynamics (Nauka, Novosibirsk, 1981) [in Russian]. 17. V. M. Kovenya, “An Algorithm for Solution of the Navier–Stokes Equations for Viscous Incompressible Fluid,” Vychisl. Tekhnol. 11 (2), 39–51 (2006). 18. A. V. Bazovkin, V. M. Kovenya, and O. M. Vavilova, “Factorization Method for Numerical Solution of the Navier-Stokes Equations for Viscous Incompressible Fluid,” Vychisl. Tekhnol. 14 (2), 13–31 (2009). 19. V. M. Kovenya, Splitting Algorithms for Solving the Aerohydrodynamic Problems of High Dimension (Izd. Sibir. Otdel. Ross. Akad. Nauk, Novosibirsk, 2014) [in Russian]. 20. V. M. Kovenya and A. S. Lebedev, “Modifications of the Splitting Method for Constructing Economical Difference Schemes,” Zh. Vychisl. Mat. i Mat. Fiz. 34 (6), 886–897 (1994) [Comput. Math. and Math. Phys. 34 (6), 763–773 (1994)]. 21. G. I. Marchuk, Methods of Numerical Mathematics (Izd. Novosib. Gos. Univ., Novosibirsk, 1972; Springer, New York, 1982; Nauka, Moscow, 1989). 22. G. I. Taylor, “Stability of a Viscous Liquid Contained Between Two Rotating Cylinders,” Philos. Trans. Roy. Soc. London. Ser. A 223, 289–343 (1923). 23. J. Abshagen, K. A. Cliffe, J. Langenberg, G. Pfister, T. Mullin, and S. J. Tavener, “Taylor–Couette Flows with Independently Rotating End Plates,” Theor. Comput. Fluid Dynamics 18 (2–4), 129–136 (2004).