Цитирование: | 1. Alard, O., Lorand, J.-P., Reisberg, L., Bodinier, J.-L., Dautria, J.-M., and O'Reilly, S., 2011, Volatile-rich metasomatism in Montferrier xenoliths (southern France): Implications for the abundances of chalcophile and highly siderophile elements in the subcontinental mantle: Journal of Petrology, v. 52, p. 2009-2045, doi: 10.1093/petrology/egr038.
2. Alt, J.C., Shanks, W.C., and Jackson, M.C., 1993, Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough: Earth and Planetary Science Letters, v. 119, p. 477-494, doi: 10.1016/0012-821X (93)90057-G.
3. Ballhaus, C.G., and Stumpfl, E.F., 1986, Sulfide and platinum mineralization in the Merensky Reef: Evidence from hydrous silicates and fluid inclusions: Contributions to Mineralogy and Petrology, v. 94, p. 193-204, doi: 10.1007/BF00592936.
4. Bataleva, Y.V., Palyanov, Y.N., Borzdov, Y.M., Bayukov, O.A., and Sobolev, N.V., 2015, Interaction of iron carbide and sulfur under P-T conditions of the lithospheric mantle: Doklady Earth Sciences, v. 463, p. 707-711, doi: 10.1134/S1028334X15070077.
5. Bell, A.S., Shearer, C., Maarten deMoor, J., and Provencio, P., 2015, Using the sulfide replacement petrology in lunar breccia 67915 to construct a thermodynamic model of S-bearing fluid in the lunar crust: Geochimica et Cosmochimica Acta, v. 171, p. 50-60, doi: 10.1016/j.gca.2015.08.002.
6. Brazhkin, V.V., Popova, S.V., and Voloshin, R.N., 1999, Pressure-temperature phase diagram of molten elements: selenium, sulfur and iodine: Physica B, Condensed Matter, v. 265, p. 64-71, doi: 10.1016/S0921-4526 (98)01318-0.
7. Dasgupta, R., Buono, A., Whelan, G., and Walker, D., 2009, High-pressure melting relations in Fe-C-S systems: Implications for formation, evolution, and structure of metallic cores in planetary bodies: Geochimica et Cosmochimica Acta, v. 73, p. 6678-6691, doi: 10.1016/j.gca.2009.08.001.
8. Delpech, G., Lorand, J.P., Grégoire, M., Cottin, J.-Y., and O'Reilly, S.Y., 2012, In-situ geochemistry of sulfides in highly metasomatized mantle xenoliths from Kerguelen, southern Indian Ocean: Lithos, v. 154, p. 296-314, doi: 10.1016/j.lithos.2012.07.018.
9. Eggler, D.H., and Lorand, J.P., 1993, Mantle sulfide geobarometry: Geochimica et Cosmochimica Acta, v. 57, p. 2213-2222, doi: 10.1016/0016-7037 (93)90563-C.
10. Evans, K.A., 2012, The redox budget of subduction zones: Earth-Science Reviews, v. 113, p. 11-32, doi: 10.1016/j.earscirev.2012.03.003.
11. Evans, K.A., and Powell, R., 2015, The effect of subduction on the sulphur, carbon and redox budget of lithospheric mantle: Journal of Metamorphic Geology, v. 33, p. 649-670, doi: 10.1111/jmg.12140.
12. Fleet, M.E., and MacRae, N.D., 1987, Sulfidation of Mg-rich olivine and the stability of niningerite in enstatite chondrites: Geochimica et Cosmochimica Acta, v. 51, p. 1511-1521, doi: 10.1016/0016-7037 (87)90333-4.
13. Jégo, S., and Dasgupta, R., 2014, The fate of sulfur during fluid-present melting of subducting basaltic crust at variable oxygen fugacity: Journal of Petrology, v. 55, p. 1019-1050, doi: 10.1093/petrology/egu016.
14. Kullerud, G., and Yoder, H.S., Jr., 1963, Sulfide-silicate relations: Carnegie Institution of Washington Year Book, v. 62, p. 215-218.
15. Lehner, S.W., Petaev, M.I., Zolotov, M.Y., and Buseck, P.R., 2013, Formation of niningerite by silicate sulfidation in EH3 enstatite chondrites: Geochimica et Cosmochimica Acta, v. 101, p. 34-56, doi: 10.1016/j.gca.2012.10.003.
16. Lorand, J.-P., and Grégoire, M., 2006, Petrogenesis of base metal sulfide assemblages of some peridotites from the Kaapvaal craton (South Africa): Contributions to Mineralogy and Petrology, v. 151, p. 521-538, doi: 10.1007/s00410-006-0074-7.
17. Palyanov, Y.N., Borzdov, Y.M., Bataleva, Y.V., Sokol, A.G., Palyanova, G.A., and Kupriyanov, I.N., 2007, Reducing role of sulfides and diamond formation in the Earth's mantle: Earth and Planetary Science Letters, v. 260, p. 242-256, doi: 10.1016/j.epsl.2007.05.033.
18. Palyanov, Y.N., Bataleva, Y.V., Sokol, A.G., Borzdov, Y.M., Kupriyanov, I.N., Reutsky, V.N., and Sobolev, N.V., 2013, Mantle-slab interaction and redox mechanism of diamond formation: National Academy of Sciences Proceedings, v. 110, p. 20,408-20,413, doi: 10.1073/pnas.1313340110.
19. Papike, J.J., Spilde, M.N., Fowler, G.W., Layne, G.D., and Shearer, C.K., 1995, The Lodran primitive achondrite: Petrogenetic insights from electron and ion microprobe analysis of olivine and orthopyroxene: Geochimica et Cosmochimica Acta, v. 59, p. 3061-3070, doi: 10.1016/0016-7037 (95)00195-6.
20. Sharp, W.E., 1969, Melting curves of sphalerite, galena, and pyrrhotite and the decomposition curve of pyrite between 30 and 65 kilobars: Journal of Geophysical Research, v. 74, p. 1645-1652, doi: 10.1029/JB074i006p01645.
21. Solferino, G.F.D., Golabek, G.J., Nimmo, F., and Schmidt, M.W., 2015, Fast grain growth of olivine in liquid Fe-S and the formation of pallasites with rounded olivine grains: Geochimica et Cosmochimica Acta, v. 162, p. 259-275, doi: 10.1016/j.gca.2015.04.020.
22. Tomkins, A., and Evans, K.A., 2015, Separate zones of sulfate and sulfide release from subducted mafic oceanic crust: Earth and Planetary Science Letters, v. 428, p. 73-83, doi: 10.1016/j.epsl.2015.07.028.
23. Zhang, Z., Lentsch, N., and Hirschmann, M.M., 2015, Carbon-saturated monosulfide melting in the shallow mantle: solubility and effect on solidus: Contributions to Mineralogy and Petrology, v. 170, p. 47-60, doi: 10.1007/s00410-015-1202-z.
|