Инд. авторы: Bataleva Y.V., Palyanov Y.N., Borzdov Y.M., Sobolev N.V.
Заглавие: Sulfidation of silicate mantle by reduced S-bearing metasomatic fluids and melts
Библ. ссылка: Bataleva Y.V., Palyanov Y.N., Borzdov Y.M., Sobolev N.V. Sulfidation of silicate mantle by reduced S-bearing metasomatic fluids and melts // Geology. - 2016. - Vol.44. - Iss. 4. - P.271-274. - ISSN 0091-7613. - EISSN 1943-2682.
Внешние системы: DOI: 10.1130/G37477.1; РИНЦ: 27146688; SCOPUS: 2-s2.0-84962294553; WoS: 000372901100010;
Реферат: eng: Sulfur, along with hydrogen, oxygen, and carbon, is one of the most common volatiles in magmatic mantle processes. As a redox-sensitive element, sulfur can have a direct influence on the redox evolution of mantle rocks, melts, and fluids, and participate in processes of mantle metasomatism. Modern concepts suggest that subduction processes play a key role in the global sulfur cycle. We report the results of the first high-pressure-high-temperature experiments in olivine-sulfur and olivine-pyrite systems aimed at modeling sulfidation processes in a silicate mantle with involvement of S-bearing fluids or melts and determining a potential mechanism of sulfide formation under deep subduction conditions. It was found that at the lower temperature stage of sulfidation, the partial recrystallization of olivine was accompanied by extraction of Fe and Ni into an S-bearing fluid and, finally, an olivine, orthopyroxene, and pyrite assemblage was formed; i.e., sulfide mineralization of an ultramafic rock occurred. At higher temperatures, the complete sulfidation and recrystallization of olivine resulted in the formation of forsterite and enstatite, containing inclusions of Ni-rich sulfide melt. Strong enrichment of S-bearing fluids in Fe and Ni led to a further sulfide melt generation. It is thus experimentally demonstrated that the influence of ephemeral S-bearing fluids on ultramafic mantle rocks results in an extraction of base metals from the solid-phase silicates, modifying their mineral and chemical compositions, and providing conditions for mobilization of an ore material in the form of sulfides at pressure-temperature conditions of the lithospheric mantle.
Ключевые слова: XENOLITHS; NININGERITE; GEOCHEMISTRY; CRUST; REDOX BUDGET; SUBDUCTION ZONES; LITHOSPHERIC MANTLE; ENSTATITE CHONDRITES; SULFUR; SULFIDES;
Издано: 2016
Физ. характеристика: с.271-274
Цитирование: 1. Alard, O., Lorand, J.-P., Reisberg, L., Bodinier, J.-L., Dautria, J.-M., and O'Reilly, S., 2011, Volatile-rich metasomatism in Montferrier xenoliths (southern France): Implications for the abundances of chalcophile and highly siderophile elements in the subcontinental mantle: Journal of Petrology, v. 52, p. 2009-2045, doi: 10.1093/petrology/egr038. 2. Alt, J.C., Shanks, W.C., and Jackson, M.C., 1993, Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough: Earth and Planetary Science Letters, v. 119, p. 477-494, doi: 10.1016/0012-821X (93)90057-G. 3. Ballhaus, C.G., and Stumpfl, E.F., 1986, Sulfide and platinum mineralization in the Merensky Reef: Evidence from hydrous silicates and fluid inclusions: Contributions to Mineralogy and Petrology, v. 94, p. 193-204, doi: 10.1007/BF00592936. 4. Bataleva, Y.V., Palyanov, Y.N., Borzdov, Y.M., Bayukov, O.A., and Sobolev, N.V., 2015, Interaction of iron carbide and sulfur under P-T conditions of the lithospheric mantle: Doklady Earth Sciences, v. 463, p. 707-711, doi: 10.1134/S1028334X15070077. 5. Bell, A.S., Shearer, C., Maarten deMoor, J., and Provencio, P., 2015, Using the sulfide replacement petrology in lunar breccia 67915 to construct a thermodynamic model of S-bearing fluid in the lunar crust: Geochimica et Cosmochimica Acta, v. 171, p. 50-60, doi: 10.1016/j.gca.2015.08.002. 6. Brazhkin, V.V., Popova, S.V., and Voloshin, R.N., 1999, Pressure-temperature phase diagram of molten elements: selenium, sulfur and iodine: Physica B, Condensed Matter, v. 265, p. 64-71, doi: 10.1016/S0921-4526 (98)01318-0. 7. Dasgupta, R., Buono, A., Whelan, G., and Walker, D., 2009, High-pressure melting relations in Fe-C-S systems: Implications for formation, evolution, and structure of metallic cores in planetary bodies: Geochimica et Cosmochimica Acta, v. 73, p. 6678-6691, doi: 10.1016/j.gca.2009.08.001. 8. Delpech, G., Lorand, J.P., Grégoire, M., Cottin, J.-Y., and O'Reilly, S.Y., 2012, In-situ geochemistry of sulfides in highly metasomatized mantle xenoliths from Kerguelen, southern Indian Ocean: Lithos, v. 154, p. 296-314, doi: 10.1016/j.lithos.2012.07.018. 9. Eggler, D.H., and Lorand, J.P., 1993, Mantle sulfide geobarometry: Geochimica et Cosmochimica Acta, v. 57, p. 2213-2222, doi: 10.1016/0016-7037 (93)90563-C. 10. Evans, K.A., 2012, The redox budget of subduction zones: Earth-Science Reviews, v. 113, p. 11-32, doi: 10.1016/j.earscirev.2012.03.003. 11. Evans, K.A., and Powell, R., 2015, The effect of subduction on the sulphur, carbon and redox budget of lithospheric mantle: Journal of Metamorphic Geology, v. 33, p. 649-670, doi: 10.1111/jmg.12140. 12. Fleet, M.E., and MacRae, N.D., 1987, Sulfidation of Mg-rich olivine and the stability of niningerite in enstatite chondrites: Geochimica et Cosmochimica Acta, v. 51, p. 1511-1521, doi: 10.1016/0016-7037 (87)90333-4. 13. Jégo, S., and Dasgupta, R., 2014, The fate of sulfur during fluid-present melting of subducting basaltic crust at variable oxygen fugacity: Journal of Petrology, v. 55, p. 1019-1050, doi: 10.1093/petrology/egu016. 14. Kullerud, G., and Yoder, H.S., Jr., 1963, Sulfide-silicate relations: Carnegie Institution of Washington Year Book, v. 62, p. 215-218. 15. Lehner, S.W., Petaev, M.I., Zolotov, M.Y., and Buseck, P.R., 2013, Formation of niningerite by silicate sulfidation in EH3 enstatite chondrites: Geochimica et Cosmochimica Acta, v. 101, p. 34-56, doi: 10.1016/j.gca.2012.10.003. 16. Lorand, J.-P., and Grégoire, M., 2006, Petrogenesis of base metal sulfide assemblages of some peridotites from the Kaapvaal craton (South Africa): Contributions to Mineralogy and Petrology, v. 151, p. 521-538, doi: 10.1007/s00410-006-0074-7. 17. Palyanov, Y.N., Borzdov, Y.M., Bataleva, Y.V., Sokol, A.G., Palyanova, G.A., and Kupriyanov, I.N., 2007, Reducing role of sulfides and diamond formation in the Earth's mantle: Earth and Planetary Science Letters, v. 260, p. 242-256, doi: 10.1016/j.epsl.2007.05.033. 18. Palyanov, Y.N., Bataleva, Y.V., Sokol, A.G., Borzdov, Y.M., Kupriyanov, I.N., Reutsky, V.N., and Sobolev, N.V., 2013, Mantle-slab interaction and redox mechanism of diamond formation: National Academy of Sciences Proceedings, v. 110, p. 20,408-20,413, doi: 10.1073/pnas.1313340110. 19. Papike, J.J., Spilde, M.N., Fowler, G.W., Layne, G.D., and Shearer, C.K., 1995, The Lodran primitive achondrite: Petrogenetic insights from electron and ion microprobe analysis of olivine and orthopyroxene: Geochimica et Cosmochimica Acta, v. 59, p. 3061-3070, doi: 10.1016/0016-7037 (95)00195-6. 20. Sharp, W.E., 1969, Melting curves of sphalerite, galena, and pyrrhotite and the decomposition curve of pyrite between 30 and 65 kilobars: Journal of Geophysical Research, v. 74, p. 1645-1652, doi: 10.1029/JB074i006p01645. 21. Solferino, G.F.D., Golabek, G.J., Nimmo, F., and Schmidt, M.W., 2015, Fast grain growth of olivine in liquid Fe-S and the formation of pallasites with rounded olivine grains: Geochimica et Cosmochimica Acta, v. 162, p. 259-275, doi: 10.1016/j.gca.2015.04.020. 22. Tomkins, A., and Evans, K.A., 2015, Separate zones of sulfate and sulfide release from subducted mafic oceanic crust: Earth and Planetary Science Letters, v. 428, p. 73-83, doi: 10.1016/j.epsl.2015.07.028. 23. Zhang, Z., Lentsch, N., and Hirschmann, M.M., 2015, Carbon-saturated monosulfide melting in the shallow mantle: solubility and effect on solidus: Contributions to Mineralogy and Petrology, v. 170, p. 47-60, doi: 10.1007/s00410-015-1202-z.