Инд. авторы: Bataleva Y.V., Palyanov Y.N., Sokol A.G., Borzdov Y.M., Bayukov O.A.
Заглавие: Wustite stability in the presence of a CO2-fluid and a carbonate-silicate melt: Implications for the graphite/diamond formation and generation of Fe-rich mantle metasomatic agents
Библ. ссылка: Bataleva Y.V., Palyanov Y.N., Sokol A.G., Borzdov Y.M., Bayukov O.A. Wustite stability in the presence of a CO2-fluid and a carbonate-silicate melt: Implications for the graphite/diamond formation and generation of Fe-rich mantle metasomatic agents // Lithos. - 2016. - Vol.244. - P.20-29. - ISSN 0024-4937. - EISSN 1872-6143.
Внешние системы: DOI: 10.1016/j.lithos.2015.12.001; РИНЦ: 26801578; SCOPUS: 2-s2.0-84950997869; WoS: 000371945100002;
Реферат: eng: Experimental simulation of the interaction of wustite with a CO2-rich fluid and a carbonate-silicate melt was performed using a multianvil high-pressure split-sphere apparatus in the FeO-MgO-CaO-SiO2-Al2O3-CO2 system at a pressure of 63 GPa and temperatures in the range of 1150 degrees C-1650 degrees C and with run time of 20 h. At relatively low temperatures, decarbonation reactions occur in the system to form iron-rich garnet (Alm(73)Prp(17)Grs(8)), magnesiowilstite (Mg# <= 0.13), and CO2-rich fluid. Under these conditions, magnesiowilstite was found to be capable of partial reducing CO2 to C-0 that leads to the formation of Fe3+-bearing magnesiowiistite, crystallization of magnetite and metastable graphite, and initial growth of diamond seeds. At T >= 1450 degrees C, an iron-rich carbonate-silicate melt (FeO similar to 56 wt.%, SiO2 similar to 12 wt.%) forms in the system. Interaction between (Fe,Mg)O, SiO2, fluid and melt leads to oxidation of magnesiowustite and crystallization of fayalite-magnetite spinel solid solution (1450 C) as well as to complete dissolution of magnesiowiistite in the carbonate-silicate melt (1550 degrees C-1650 degrees C). In the presence of both carbonate-silicate melt and CO2-rich fluid, dissolution (oxidation) of diamond and metastable graphite was found to occur. The study results demonstrate that under pressures of the lithospheric mantle in the presence of a CO2-rich fluid, wilstite/magnesiowustite is stable only at relatively low temperatures when it is in the absolute excess relative to CO2-rich fluid. In this case, the redox reactions, which produce metastable graphite and diamond with concomitant partial oxidation of wustite to magnetite, occur. Wustite is unstable under high concentrations of a CO2-rich fluid as well as in the presence of a carbonate-silicate melt: it is either completely oxidized or dissolves in the melt or fluid phase, leading to the formation of Fe2+- and Fe3+-enriched carbonate-silicate melts, which are potential metasomatic agents in the lithospheric mantle. (C) 2015 Elsevier B.V. All rights reserved.
Ключевые слова: OXYGEN FUGACITY; LITHOSPHERIC MANTLE; DEEP MANTLE; OXIDATION-STATE; NATURAL DIAMOND; MINERAL INCLUSIONS; DIAMOND FORMATION; EARTHS LOWER MANTLE; HPHT experiment; Graphite formation; Decarbonation; Carbonate-silicate melt; CO2-fluid; Wustite; FERRIC IRON CONTENT; OCEANIC-CRUST;
Издано: 2016
Физ. характеристика: с.20-29
Цитирование: 1. Arima M., Kozai Y., Akaishi M. Diamond nucleation and growth by reduction of carbonate melts under high-pressure and high-temperature conditions. Geology 2002, 30:691-694. 2. Bataleva Y.V., Palyanov Y.N., Sokol A.G., Borzdov Y.M., Palyanova G.A. Conditions for the origin of oxidized carbonate-silicate melts: implications for mantle metasomatism and diamond formation. Lithos 2012, 128-131:113-125. 3. Bataleva Y.V., Pal'yanov Y.N., Sokol A.G., Borzdov Y.M., Sobolev N.V. Conditions of formation of Cr-pyrope and escolaite during mantle metasomatism: Experimental modeling. Doklady Earth Sciences 2012, 442(1):76-80. 4. Bataleva Y.V., Palyanov Y.N., Sokol A.G., Borzdov Y.M., Bayukov O.A. The role of rocks saturated with metallic iron in the formation of ferric carbonate-silicate melts: experimental modeling under PT-conditions of lithospheric mantle. Russian Geology and Geophysics 2015, 56(1-2):143-154. 5. Berman R.G. Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications. Canadian Mineralogist 1991, 29:833-855. 6. Biellmann C., Gillet P., Guyot F., Peyronneau J., Reynard B. Experimental evidence for carbonate stability in the Earth's lower mantle. Earth and Planetary Science Letters 1993, 118:31-41. 7. Boulard E., Gloter A., Corgne A., Antonangeli D., Auzende A.-L., Perrillat J.-P., Guyot F., Fiquet J. New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences of the United States of America 2011, 108(13):5184-5187. 8. Brenker F.E., Vollmer C., Vincze L., Vekemans B., Szymanskia A., Janssens K., Szaloki I., Nasdala L., Joswig W., Kaminsky F. Carbonates from the lower part of transition zone or even the lower mantle. Earth and Planetary Science Letters 2007, 260(1-2):1-9. 9. Bulanova G.P. The formation of diamond. Journal of Geochemical Exploration 1995, 53:2-23. 10. Creighton S., Stachel T., Matveev S., Höfer H., McCammon C., Luth R.W. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contributions to Mineralogy and Petrology 2009, 157:491-504. 11. Dasgupta R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Reviews in Mineralogy and Geochemistry 2013, 75:183-229. 12. Dubrovinsky L.S., Dubrovinskaya N.A., Annersten H., Hålenius E., Harryson H., Tutti F., Rekhi S., LeBihan T. Stability of ferropericlase in the lower mantle. Science 2000, 289:430-432. 13. Fei Y., Mao H.K., Shu J., Hu J. P-V-T equation of state of magnesiowüstite (Mg0.6Fe0.4)O. Physics and Chemistry of Minerals 1992, 18:416-422. 14. Finger L.W. The Uncertainty in Calculated Ferric Iron Content of a Microprobe Analysis? 1972, 71:600-603. Carnegie Institute Washington, Yearbook. 15. Frost D.J., McCammon C.A. The redox state of Earth's mantle. Annual Review of Earth and Planetary Sciences 2008, 36:389-420. 16. Harte B. Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine 2010, 74(2):189-215. 17. Harte B., Hudson N.F.C. Mineral associations in diamonds from the lowermost upper mantle and uppermost lower mantle. Geological Society of India 2013, vol. 1:235-253. 18. Harte B., Richardson S. Mineral inclusions in diamonds track the evolution of a Mesozoic subducted slab beneath West Gondwanaland. Gondwana Research 2012, 21(1):236-245. 19. Harte B., Harris J.W., Hutchison M.T., Watt G.R., Wilding M.C. Lower mantle mineral associations in diamonds from São-Luíz, Brazil. (Joe) Boyd: Geochemical Society Special Publication, No 6 1999, 125-153. Y. Fei, C.M. Bertka, B.O. Mysen (Eds.). 20. Hayman P.C., Kopylova M.G., Kaminsky F.Y. Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contributions to Mineralogy and Petrology 2005, 149:430-445. 21. Hirschmann M.M. Ironing out the oxidation of Earth's mantle. Science 2009, 325(5940):545-546. 22. Kaminsky F. Mineralogy of the lower mantle: A review of 'super-deep' mineral inclusions in diamond. Earth-Science Reviews 2012, 110(1-4):127-147. 23. Kaminsky F.V., Wirth R., Schreiber A. Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association. Canadian Mineralogist 2013, 51(5):447-466. 24. Kaminsky F.V., Ryabchikov I.D., McCammon C.A., Longo M., Abakumov A.M., Turner S., Heidari H. Oxidation potential in the Earth's lower mantle as recorded by ferropericlase inclusions in diamond. Earth and Planetary Science Letters 2015, 417:49-56. 25. Kelley K.A., Cottrell E. Water and the oxidation state of subduction zone magmas. Science 2009, 325(5940):605-607. 26. Khokhryakov A.F., Pal'yanov Y.N. The evolution of diamond morphology in the process of dissolution: experimental data. American Mineralogist 2007, 92:909-917. 27. Klein-BenDavid O., Izraeli E.S., Hauri E., Navon O. Mantle fluid evolution: a tale of one diamond. Lithos 2004, 77(1-4):243-253. 28. Klein-BenDavid O., Logvinova A.M., Schrauder M., Spetius Z.V., Weiss Y., Hauri E.H., Kaminsky F.V., Sobolev N.V., Navon O. High-Mg carbonatitic microinclusions in some Yakutian diamonds; a new type of diamond-forming fluid. Lithos 2009, 112:648-659. 29. Klein-BenDavid O., Pearson D.G., Nowell G.M., Ottley C., McNeill J.C.R., Cartigny P. Mixed fluid sources involved in diamond growth constrained by Sr-Nd-Pb-C-N isotopes and trace elements. Earth and Planetary Science Letters 2010, 289:123-133. 30. Knoche R., Sweeney R.J., Luth R.W. Carbonation and decarbonation of eclogites: the role of garnet. Contributions to Mineralogy and Petrology 1999, 135:332-339. 31. Kopylova M., Navon O., Dubrovinsky L., Khachatryan G. Carbonatitic mineralogy of natural diamond-forming fluids. Earth and Planetary Science Letters 2010, 291:126-137. 32. Lin J.-F., Heinz D.L., Mao H.K., Hemley R.J., Devine J.M., Li J., Shen G. Stability of magnesiowüstite in Earth's lower mantle. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(8):4405-4408. 33. Mackwell S., Bystricky M., Sproni C. Fe-Mg interdiffusion in (Mg, Fe)O. Physics and Chemistry of Minerals 2005, 32(5-6):418-425. 34. Mao H.K., Shu J., Fei Y., Hu J.Z., Hemley R.J. The wüstite enigma. Physics of the Earth and Planetary Interiors 1996, 96:135-145. 35. McCammon C. Deep diamond mysteries. Science 2001, 293:813-814. 36. McCammon C.A., Hutchison M., Harris J. Ferric iron content of mineral inclusions in diamonds from São-Luíz: a view into the lower mantle. Science 1997, 278:434-436. 37. McCammon C.A., Stachel T., Harris J.W. Iron oxidation state in lower mantle mineral assemblages: II. Inclusions in diamonds from Kankan, Guinea. Earth and Planetary Science Letters 2004, 222:423-434. 38. Oganov A.R., Hemley R.J., Hazen R.M., Jones A.P. Structure, bonding and mineralogy of carbon at extreme conditions. Reviews in Mineralogy and Geochemistry 2013, 75(1):47-77. 39. Otsuka K., McCammon C.A., Karato S. Tetrahedral occupancy of ferric iron in (Mg, Fe)O: implications for point defects in the Earth's lower mantle. Physics of the Earth and Planetary Interiors 2010, 180(3-4):179-188. 40. Otsuka K., Longo M., McCammon C.A., Karato S.I. Ferric iron content of ferropericlase as a function of composition, oxygen fugacity, temperature and pressure: implications for redox conditions during diamond formation in the lower mantle. Earth and Planetary Science Letters 2013, 365:7-16. 41. Pal'yanov Y.N., Sokol A.G., Borzdov Y.M., Khokhryakov A.F. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study. Lithos 2002, 60(3-4):145-159. 42. Pal'yanov Yu.N., Sokol A.G., Borzdov Yu.M., Khokhryakov A.F., Sobolev N.V. Diamond formation through carbonate-silicate interaction. American Mineralogist 2002, 87:1009-1013. 43. Pal'yanov Yu.N., Sokol A.G., Tomilenko A.A., Sobolev N.V. Conditions of diamond formation through carbonate-silicate interaction. European Journal of Mineralogy 2005, 17:207-214. 44. Palyanov Y.N., Borzdov Y.M., Bataleva Y.V., Sokol A.G., Palyanova G.A., Kupriyanov I.N. Reducing role of sulfides and diamond formation in the Earth's mantle. Earth and Planetary Science Letters 2007, 260(1-2):242-256. 45. Palyanov Y.N., Borzdov Y.M., Khokhryakov A.F., Kupriyanov I.N., Sokol A.G. Effect of nitrogen impurity on diamond crystal growth processes. Crystal Growth and Design 2010, 10(7):3169-3175. 46. Palyanov Y.N., Bataleva Y.V., Sokol A.G., Borzdov Y.M., Kupriyanov I.N., Reutsky V.N., Sobolev N.V. Mantle-slab interaction and redox mechanism of diamond formation. Proceedings of the National Academy of Sciences of the United States of America 2013, 110(51):20408-20413. 47. Prinz M., Manson D.V., Hlava P.F., Keil K. Inclusions in diamonds: garnet lherzolite and eclogite assemblages. Physics and Chemistry of the Earth 1975, 9:797-815. 48. Ringwood A.E. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica et Cosmochimica Acta 1991, 55:2083-2110. 49. Rohrbach A., Schmidt M.W. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 2011, 472(7342):209-212. 50. Schrauder M., Navon O. Solid carbon dioxide in natural diamond. Nature 1993, 365(6441):42-44. 51. Schrauder M., Navon O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochimica et Cosmochimica Acta 1994, 58:761-771. 52. Shirey S.B., Cartigny P., Frost D.G., Keshav S., Nestola F., Nimis P., Pearson D.G., Sobolev N.V., Walter M.J. Diamonds and the geology of mantle carbon. Reviews in Mineralogy and Geochemistry 2013, 75:355-421. 53. Siebert J., Guyot F., Malavergne V. Diamond formation in metal-carbonate interactions. Earth and Planetary Science Letters 2005, 229:205-216. 54. Sobolev N.V., Yefimova E.S., Channer D.M.DeR, Anderson P.F.N., Barron K.M. Unusual upper mantle beneath Guaniamo, Guyana shield: evidence from diamond inclusions. Geology 1998, 26:971-974. 55. Sobolev N.V., Logvinova A.M., Efimova E.S. Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation. Russian Geology and Geophysics 2009, 50(12):1234-1248. 56. Stachel T., Harris J.W., Brey G.P. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contributions to Mineralogy and Petrology 1998, 132(1):34-47. 57. Stagno V., Tange Y., Miyajima N., McCammon C.A., Irifune T., Frost D.G. The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophysical Research Letters 2011, 38(19). 58. Stagno V., Ojwang D.O., McCammon C.A., Frost D.J. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 2013, 493(7430):84-88. 59. Svicero D.P. Distribution and origin of diamonds in Brazil: an overview. Journal of Geodynamics 1995, 20(4):493-514. 60. Tremper R.T., Giddings R.A., Hodge J.D., Gordon R.S. Creep of polycrystalline MgO-FeO-Fe2O3 solid-solutions. Journal of the American Ceramic Society 1974, 57(10):421-428. 61. Walter M.J., Bulanova G.P., Armstrong L.S., Keshav S., Blundy J.D., Gudfinnsson G., Lord O.T., Lennie A.R., Clark S.M., Smith C.B., Gobbo L. Primary carbonatite melt from deeply subducted oceanic crust. Nature 2008, 454:622-625. 62. Walter M.J., Kohn S.C., Araujo D., Bulanova G.P., Smith C.B., Gaillou E., Wang J., Steele A., Shirey S.B. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 2011, 334(6052):54-57. 63. Wang A., Pasteris J.D., Meyer H.O.A., DeleDuboi M.L. Magnesite-bearing inclusion assemblage in natural diamond. Earth and Planetary Science Letters 1996, 141(1-4):293-306. 64. Wirth R., Dobrzhinetskaya L., Harte B., Schreiber A., Green H.W. High-Fe (Mg, Fe)O inclusion in diamond apparently from the lowermost mantle. Earth and Planetary Science Letters 2014, 404:365-375. 65. Wood B.J., Nell J. High-temperature electrical-conductivity of the lower-mantle phase (Mg, Fe)O. Nature 1991, 351(6324):309-311. 66. Woodland A.B., Angel R.J. Phase relations in the system fayalite-magnetite at high pressures and temperatures. Contributions to Mineralogy and Petrology 2000, 139:734-747. 67. Woodland A.B., Koch M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth and Planetary Science Letters 2003, 214:295-310. 68. Zhang C.-L., Li S., Wu T.-H., Peng S.-Y. Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction. Materials Chemistry and Physics 1999, 58:139-145.