Инд. авторы: Rudnev S.N., Izokh A.E., Borisenko A.S., Gas'kov I.V.
Заглавие: Granitoid magmatism and metallogeny of the Lake Zone in Western Mongolia (by the example of the Bumbat-Hairhan area)
Библ. ссылка: Rudnev S.N., Izokh A.E., Borisenko A.S., Gas'kov I.V. Granitoid magmatism and metallogeny of the Lake Zone in Western Mongolia (by the example of the Bumbat-Hairhan area) // Russian Geology and Geophysics. - 2016. - Vol.57. - Iss. 2. - P.207-224. - ISSN 1068-7971. - EISSN 1878-030X.
Внешние системы: DOI: 10.1016/j.rgg.2016.02.001; РИНЦ: 26972090; SCOPUS: 2-s2.0-84959365824; WoS: 000371245000001;
Реферат: eng: We present the results of a study of the geologic structure and age sequence of formation of the Late Neoproterozoic-Early Paleozoic plagiogranitoid and gabbroid associations in the Bumbat-Hairhan intrusive area of the Lake Zone in Western Mongolia. The petrogeochemical characteristics of the plagiogranitoids provide information about the conditions of formation of their parental melts at the island-arc and accretion-collision stages of the regional evolution. They also help to establish the main magma-generating sources as well as the major mechanisms of large-scale formation of granitoid melts and their relationship with ore generation processes. According to the trace-element and REE patterns and indicative ratios of these elements, the plagiogranitoids are subdivided into high-and low-alumina ones. Among the island-arc plagiogranitoids (551-524 Ma) of the Bumbat-Hairhan area, high-alumina varieties are the most widespread. They resulted from the partial melting of metabasites in equilibrium with garnet-containing restite at >= 15 kbar during their subsidence into the subduction zone. In geochemical features these plagiogranitoids are similar to high-Si adakites of different world regions. Island-arc low-alumina plagiogranitoids are scarcer. Their geochemical characteristics indicate that the parental melts were generated through the partial melting of metabasites in the lower part and/or in the basement of the island-arc system in equilibrium with amphibole-containing restite at <= 8 kbar. Plagiogranitoid associations of the accretion-collision stage (511-468 Ma) are the most widespread in the Bumbat-Hairhan area. They are subdivided into high-and low-alumina ones. According to the contents of trace elements and their indicative ratios, the low-alumina plagiogranitoids resulted from the partial melting of metabasites in equilibrium with plagioclase-containing restite at <= 8 kbar in the upper part of the collisional structure, and the high-alumina ones were generated through the melting of metabasites in the basement of thick crust in equilibrium with garnet-containing restite at >= 15 kbar. Geochronological studies in the Bumbat-Hairhan area revealed two stages of ore-generating processes spatially and temporally related to the formation of low-alumina plagiogranitoids. The early stage (518 +/- 5 Ma), development of vein Cu (Au) mineralization, coincided in time with the formation of island-arc low-alumina plagiogranitoids of the Darbi massif (similar to 524 Ma). The late stage (456 +/- 4 Ma), formation of porphyry Cu-Mo (Au) mineralization, was synchronous with the formation of the low-alumina plagiogranites at the accretion-collision stage (similar to 468 Ma). (C) 2016, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
Ключевые слова: BELT; GROWTH; CALEDONIDES; SIBERIAN CRATON; GEOCHRONOLOGICAL-DATA; CONTINENTAL-CRUST; ND ISOTOPE DATA; PLASMA-MASS SPECTROMETRY; geochemistry; geochronology; Late Neoproterozoic-Early Paleozoic intrusive magmatism; Lake Zone of Western Mongolia; Central Asian Fold Belt; CENTRAL-ASIAN FOLDBELT; MINERALIZATION;
Издано: 2016
Физ. характеристика: с.207-224
Цитирование: 1. Arth, J.G., 1979. Some trace elements in trondhjemites. Their implications to magma genesis and paleotectonic setting, in: Barker, F. (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp. 123-132. Beard, J.S., Lofgren, G.E., 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kbar. J. Petrol. 32, 365-401. 2. Borisenko, A.S., Sotnikov, V.I., Izokh, A.E., Polyakov, G.V., Obolensky, A.A., 2006. Permo-Triassic mineralization in Asia and its relation to plume magmatism. Russian Geology and Geophysics (Geologiya i Geofizika) 47 (1), 170-186 (166-182). 3. Borisenko A.S., Gas'kov I.V., Babich V.V., Lobanov K.V., Orolmaa D., Izokh A.E. The stages of ore formation in the Bumbat ore cluster in the Lake Zone. Mongolia, and their relationship with magmatism, in: Proc. Fourth Russ. Conf. "Isotope Systems and Time of Geologic Processes" [in Russian]. Tsentr Informatsionnoi Kul'tury, St. Petersburg 2009, 1:82-84. 4. Castillo P.R. An overview of adakite petrogenesis. Chinese Sci. Bull. 2006, 51(3):257-268. 5. Dobretsov, N.L., Borisenko, A.S., Izokh, A.E., Zhmodik, S.M., 2011. Metallogenic specialization of LIPs and the role of mantle plumes in the formation of large and superior ore deposits, in: Large Igneous Province of Asia: Mantle Plumes and Metallogeny (Abstract Volume). Irkutsk, Petrographica, pp. 61-64. 6. Drummond M.S., Defant M.J., Kepezhinskas P.K. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Trans. R. Soc. Edinburgh. Earth Sci. 1996, 87:205-215. 7. Gaskov, I.V., Borisenko, A.S., Babich, V.V., Naumov, E.A., 2010. The stages and duration of formation of gold mineralization at copper-skarn deposits (Altai-Sayan folded area). Russian Geology and Geophysics (Geologiya i Geofizika) 51 (10), 1091-1101 (1399-1412). 8. Gas'kov I.V., Borisenko A.S., Babich V.V., Borovikov A.A. Geologic and mineralogic specifics of copper and gold mineralization of the Bumbat ore cluster and its age correlations with magmatism (Lake Zone, Mongolia), in: Proc. Sci. Meet. "Geodynamic Evolution of Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent)" [in Russian]. IZK SO RAN, Irkutsk 2014, 12:74-76. 9. Gordienko, I.V., 2006. Geodynamic evolution of late Baikalides and Paleozoids in the folded periphery of the Siberian craton. Russian Geology and Geophysics (Geologiya i Geofizika) 47 (1), 51-67 (53-70). 10. Izokh A.E., Polyakov G.V., Krivenko A.P., Bognibov V.I., Bayarbileg L. Gabbroid Associations of Western Mongolia [in Russian] 1990, Nauka, Novosibirsk. 11. Izokh, A.E., Polyakov, G.V., Gibsher, A.S., Balykin, P.A., Zhuravlev, D.Z., Parkhomenko, V.A., 1998. High-alumina stratified gabbroids of the Central-Asian fold belt: geochemistry, Sm-Nd isotopic age, and geodynamic conditions of formation. Geologiya i Geofizika (Russian Geology and Geophysics) 39 (11), 1565-1577 (1565-1577). 12. Izokh, A.E., Polyakov, G.V., Shelepaev, R.A., Vrublevskii, V.V., Egorova, V.V., Rudnev, S.N., Lavrenchuk, A.V., Borodina, E.V., Oyunchimeg, T., 2008. Early Paleozoic Large Igneous Province of the Central Asia Mobile Belt. www.largeigneous.org. May 2008 LIP of the month. 13. Izokh, A.E., Vishnevskii, A.V., Polyakov, G.V., Kalugin, V.M., Oyunchimeg, T., Shelepaev, R.A., Egorova, V.V., 2010. The Ureg Nuur Pt-bearing volcanoplutonic picrite-basalt association in the Mongolian Altay as evidence for a Cambrian-Ordovician Large Igneous Province. Russian Geology and Geophysics (Geologiya i Geofizika) 51 (5), 521-533 (665-681). 14. Izokh E.P. Prediction Assessment of the Ore Potential of Granitoid Associations [in Russian] 1978, Nedra, Moscow. 15. Jahn B.M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geol. Soc. London. Spec. Publ. 2004, 226:73-100. J. Malpas, C.J.N. Fletcher, J.C. Aitchison (Eds.). 16. Jahn B.M., Wu F., Chen B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23:82-92. 17. Jiangfeng Q., Shaocong L., Yongfei L. Post-collisional plutonism with adakitic signatures: the Triassic Yangba granodiorite (Bikou terrane, northern Yangtze blok). Chin. J. Geochem. 2008, 27:72-81. 18. Khain E.V., Amelin Yu.V., Izokh A.E. Sm-Nd data on the age of ultramafic-mafic complexes in subduction zone of Western Mongolia. Dokl. Akad. Nauk 1995, 341(6):791-796. 19. Kovach V.P., Yarmolyuk V.V., Kovalenko V.I., Kozlovskyi A.M., Kotov A.B., Terent'eva L.B. Composition, sources, and mechanisms of formation of the continental crust of the Lake Zone of the Central Asian Caledonides. II. Geochemical and Nd isotope data. Petrology 2011, 19(4):399-425. 20. Kovalenko V.I., Yarmolyuk V.V., Kovach V.P., Kotov A.B., Kozakov I.K., Sal'nikova E.B. Sources of Phanerozoic granitoids of Central Asia: Sm-Nd isotope data. Geokhimiya 1996, 8:699-712. 21. Kovalenko V.I., Yarmolyuk V.V., Sal'nikova E.B., Kartashov P.M., Kovach V.P., Kozakov I.K., Kozlovskii A.M., Kotov A.B., Ponomarchuk V.A., Listratova E.N., Yakovleva S.Z. The Khaldzan-Buregtei massif of peralkaline rare-metal igneous rocks: structure, geochronology, and geodynamic setting in the Caledonides of Western Mongolia. Petrology 2004, 12(5):412-436. 22. Kovalenko V.I., Yarmolyuk V.V., Kovach V.P., Kotov A.B., Kozakov I.K., Salnikova E.B., Larin A.M. Isotope provinces, mechanism of generation and sources of the continental crust in the Central Asia mobile belt. J. Asia Earth Sci. 2004, 23:605-627. 23. Kozakov I.K., Sal'nikova E.B., Khain E.V., Kovach V.P., Berezhnaya N.G., Yakovleva S.Z., Plotkina Yu.V. The stages and tectonic setting of formation of the early Caledonides in the Lake Zone, Mongolia: results of U-Pb and Sm-Nd isotope studies. Geotektonika 2002, 2:80-92. 24. Krivtsov A.I., Migachev I.F., Minina O.V. Mineralogic and geochemical types of ores of porphyry copper deposits: gold potential and zoning. Geokhimiya 1985, 10:1417-1429. 25. Kroner A., Kovach V., Belousova E., Hegner E., Amstrong R., Dolgopolova A., Seltmann R., Alexeiev D.V., Hoffmann J.E., Wong J., Sun M., Cai K., Wang T., Tong Y., Wilde S.A., Degtyarev K.E., Rytsk E. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res. 2014, 25:103-125. 26. Kruk N., Rudnev S., Vladimirov A., Shokalsky S., Kovach V., Serov P., Volkova N. Early-Middle Paleozoic granitoids in Gorny Altai, Russia: implications for continental crust history and magma sources. J. Asian Earth Sci. 2011, 42:928-948. 27. Liseikin, A.V., 2009. Seismotomographic Models of the Deep Structure of the Altai-Sayan Folded Area, from Data of Areal Seismic Observations. PhD Thesis [in Russian]. IGM SO RAN, Novosibirsk. 28. Martin H., Smithies R.H., Rapp R., Moyen J.F., Champion D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implication for crustal evolution. Lithos 2005, 79:1-24. 29. Nikolaeva I.V., Palesskii S.V., Koz'menko O.A., Anoshin G.N. Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS). Geochem. Int. 2008, 46(10):1016-1022. 30. Panteeva S.V., Gladkochoub D.P., Donskaya T.V., Markova V.V., Sandimirova G.P. Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion. Spectrochim. Acta. Part B: Atomic Spectroscopy 2003, 58:341-350. 31. Pirajno F., Ernst R.E., Borisenko A.S., Fedoseev G., Naumov E.A. Intraplate magmatism in Central Asia and China and associated metallogeny. Ore Geol. Rev. 2009, 35:114-136. 32. Rapp R.P., Watson E.B. Dehydratation melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36:891-931. 33. Rapp R.P., Watson E.B., Miller C.F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 1991, 51:1-25. 34. Rudnev S.N. Early Paleozoic Granitoid Magmatism of the Altai-Sayan Folded Area and Lake Zone in Western Mongolia [in Russian] 2013, Izd. SO RAN, Novosibirsk. 35. Rudnev S.N., Vladimirov A.G., Ponomarchuk V.A., Bibikova E.V., Sergeev S.A., Matukov D.I., Plotkina Yu.V., Bayanova T.B. The Kaakhem polychronous granitoid batholith (Eastern Tuva): composition, age, sources, and geodynamic setting. Litosfera 2006, 2:3-33. 36. Rudnev, S.N., Ponomarchuk, V.A., Kiseleva, V.Yu., Dokukina, G.A., Semenova, D.V., 2007. Sr isotopes in granitoids of the Kaakhem polychronous batholith (Eastern Tuva), in: Proceedings of the A.P. Vinogradov 18th Isotope Geochemistry Symposium [in Russian]. GEOKhI RAN, Moscow, pp. 229-230. 37. Rudnev S.N., Izokh A.E., Kovach V.P., Shelepaev R.A., Terent'eva L.B. The age, composition, sources, and geodynamic settings of formation of granitoids in the northern Lake Zone, western Mongolia: mechanisms of growth of the Paleozoic continental crust. Petrologiya 2009, 17(5):470-508. 38. Rudnev, S.N., Izokh, A.E., Borisenko, A.S., Shelepaev, R.A., Orihashi, Y., Lobanov, K.V., Vishnevsky, A.V., 2012. Early Paleozoic magmatism in the Bumbat-Hairhan area of the Lake Zone in western Mongolia (geological, petrochemical, and geochronological data). Russian Geology and Geophysics (Geologiya i Geofizika) 53 (5), 425-441 (557-578). 39. Rudnev, S.N., Babin, G.A., Kovach, V.P., Kiseleva, V.Yu., Serov, P.A., 2013. The early stages of island-arc plagiogranitoid magmatism in Gornaya Shoriya and West Sayan. Russian Geology and Geophysics (Geologiya i Geofizika) 54 (1), 20-33 (27-44). 40. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes, in: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. Spec. Publ., No. 42, 313-345. 41. Surkov, V.S. Grishin, M.P., Lotyshev, V.I., Smirnov, L.V., 1998. The Earth's crust structure in Siberia and tectonic structure of the West Siberian Plate and Siberian Platform basement, in: Proc. Russ. Geophys. Workshop "Geophysical Methods of Study of the Earth's Crust" [in Russian]. Izd. SO RAN, Novosibirsk, pp. 8-20. 42. Taylor S.R., McLennan S.M. The Continental Crust: Its Evolution and Composition 1985, Blackwell, London. 43. Turkina O.M. Model geochemical types of tonalite-trondhjemite melts and their natural equivalents. Geokhimiya 2000, 7:704-717. 44. Turkina O.M. Proterozoic tonalites and trondhjemites of the southwestern margin of the Siberian Craton: isotope geochemical evidence for the lower crustal sources and conditions of melt formation in collisional settings. Petrology 2005, 13(1):35-48. 45. Wang Q., Wyman D.A., Xu J., Jian P., Zhao Z., Li C., Xu W., Ma J., He B. Early Cretactous adakitic granite in the Northern Dabie complex, Central Chine: implication for partial melting and delamination of thickened low crust. Geochim. Cosmochim. Acta 2007, 71:2609-2936. 46. Yarmolyuk V.V., Kovalenko V.I., Kovach V.P., Kozakov I.K., Kotov A.B., Sal'nikova E.B. Isotopic composition, sources of crustal magmatism, and crustal structure of Caledonides of the Ozernaya Zone, Central Asian Foldbelt. Dokl. Earth Sci. 2002, 387A(9):1043-1047. 47. Yarmolyuk V.V., Kovalenko V.I., Kovach V.P., Kozakov I.K., Kotov A.B., Sal'nikova E.B. Geodynamics of Caledonides in the Central Asian Foldbelt. Dokl. Earth Sci. 2003, 389A(3):311-316. 48. Yarmolyuk V.V., Kovach V.P., Kovalenko V.I., Salnikova E.B., Kozlovskii A.M., Kotov A.B., Yakovleva S.Z., Fedoseenko A.M. Composition, sources, and mechanism of continental crust growth in the Lake Zone of the Central Asian Caledonides: I. Geological and geochronological data. Petrology 2011, 19(1):55-78. 49. Yarmolyuk V.V., Kovach V.P., Kozakov I.K., Kozlovskii A.M., Kotov A.B., Rytsk E.Yu. Mechanisms of formation of continental crust in the Central Asian Fold Belt. Geotektonika 2012, 4:3-27.