Инд. авторы: Rashchenko S.V., Likhacheva A.Y., Goryainov S.V., Krylov A.S., Litasov K.D.
Заглавие: In situ spectroscopic study of water intercalation into talc: New features of 10 angstrom phase formation
Библ. ссылка: Rashchenko S.V., Likhacheva A.Y., Goryainov S.V., Krylov A.S., Litasov K.D. In situ spectroscopic study of water intercalation into talc: New features of 10 angstrom phase formation // American Mineralogist. - 2016. - Vol.100. - Iss. 1-2. - P.431-436. - ISSN 0003-004X. - EISSN 1945-3027.
Внешние системы: DOI: 10.2138/am-2016-5356; РИНЦ: 26895875; SCOPUS: 2-s2.0-84959163308; WoS: 000370213500041;
Реферат: eng: The synthesis of 10 angstrom phase via the reaction of talc plus water at 8 GPa and 500 degrees C was studied by in situ Raman spectroscopy using a diamond-anvil cell. The initial fast (2 h) incorporation of interlayer H2O molecules into the talc structure is traced by gradual growth of new OH stretching bands at 3592 and 3621 cm(-1) and the shift of several framework bands. Further monitoring at HP-HT conditions over 7 h reveals gradual weakening of the 3592 cm(-1) band, which can probably be related to the onset of the formation of "long-run" 10 angstrom phase through the appearance of silanol groups following the model proposed by Pawley et al. (2010), influencing the interlayer hydrogen bonding.
Ключевые слова: TEMPERATURES; STABILITY; MANTLE; HP-HT; H2O CONTENT; HIGH-PRESSURES; SUBDUCTION ZONES; SYSTEM MGO-SIO2-H2O; subduction; water transport; talc; 10 angstrom phase; 10-ANGSTROM PHASE; GPA;
Издано: 2016
Физ. характеристика: с.431-436
Цитирование: 1. Bauer, J.F., and Sclar, C.B. (1981) The 10 Å phase in the system MgO-SiO2-H2O. American Mineralogist, 66, 576-585. 2. Chinnery, N.J., Pawley, A.R., and Clark, S.M. (1999) In situ observation of the formation of 10 Å phase from talc + H2O at mantle pressures and temperatures. Science, 286, 940-942. 3. Comodi, P. (2005) The 10 Å phase: Crystal structure from single-crystal X ray data. American Mineralogist, 90, 1012-1016. 4. Comodi, P., Cera, F., Dubrovinsky, L., and Nazzareni, S. (2006) The high-pressure behaviour of the 10 Å phase: A spectroscopic and diffractometric study up to 42 GPa. Earth and Planetary Science Letters, 246, 444-457. 5. Comodi, P., Cera, F., Nazzareni, S., and Dubrovinsky, L. (2007) Raman spectroscopy of the 10 Å phase at simultaneously HP-HT. European Journal of Mineralogy, 19, 623-629. 6. Dorbath, C.C., Gerbault, M., Carlier, G., and Guiraud, M. (2008) The double seismic zone of the Nazca plate in Northern Chile: High resolution velocity structure, petrological implications and thermo-mechanical modelling. Geochemistry, Geophysics, Geosystems, 9, 1-29. 7. Dvir, O., Pettke, T., Fumagalli, P., and Kessel, R. (2011) Fluids in the peridotite-water system up to 6 GPa and 800 C: New experimental constrains on dehydration reactions. Contributions to Mineralogy and Petrology, 161, 829-844. 8. Fumagalli, P., and Poli, S. (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. Journal of Petrology, 46, 555-578. 9. Fumagalli, P., Stixrude, L., Poli, S., and Snyder, D. (2001) The 10 Å phase: A high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth and Planetary Science Letters, 186, 125-141. 10. Jacobsen, S.D., and van der Lee, S., Eds. (2006) Earth s Deep Water Cycle. American Geophysical Union, Washington, D.C. 11. Khisina, N.R., and Wirth, R. (2008) Nanoinclusions of high-pressure hydrous silicate, Mg3Si4O10(OH)2 nH2O (10 Å phase), in mantle olivine: Mechanisms of formation and transformation. Geochemistry International, 46, 319-327. 12. Khodyrev, O.Y., and Agoshkov, V.M. (1986) Phase transformations of serpentine in the system MgO-SiO2-H2O at the pressure range 40 to 80 kbar. Geokhimiya, 264-269. 13. Kovacs, I., Green, D.H., Rosenthal, A., Hermann, J., O Neill, H.St.C., Hibberson, W.O., and Udvardi, B. (2012) An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus. Journal of Petrology, 53, 2067-2093. 14. Ohtani, E., Litasov, K., Hosoya, T., Kubo, T., and Kondo, T. (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Physics of the Earth and Planetary Interiors, 143, 255-269. 15. Parry, S.A., Pawley, A.R., Jones, R.L., and Clark, S.M. (2007) An infrared spectroscopic study of the OH stretching frequencies of talc and 10 Å phase to 10 GPa. American Mineralogist, 92, 525-531. 16. Pawley, A.R., and Wood, B.J. (1995) The high-pressure stability of talc and 10 Å phase-potential storage sites for H2O in subduction zones. American Mineralogist, 80, 998-1003. 17. Pawley, A.R., Welch, M.D., Lennie, A.R., and Jones, R.L. (2010) Volume behavior of the 10 Å phase at high pressures and temperatures, with implications for H2O content. American Mineralogist, 95, 1671-1678. 18. Pawley, A.R., Chinnery, N.J., Clark, S.M., and Walter, M.J. (2011) Experimental study of the dehydration of 10 Å phase, with implications for its H2O content and stability in subducted lithosphere. Contributions to Mineralogy and Petrology, 162, 1279-1289. 19. Phillips, B.L., Mason, H.E., and Guggenheim, S. (2007) Hydrogen bonded silanols in the 10 Å phase: Evidence from NMR spectroscopy. American Mineralogist, 92, 1474-1485. 20. Rashchenko, S.V., Likhacheva, A.Y., and Bekker, T.B. (2013) Preparation of a macrocrystalline pressure calibrant SrB4O7:Sm2+ suitable for the HP-HT powder diffraction. High Pressure Research, 33, 720-724. 21. Rashchenko, S.V., Kurnosov, A., Dubrovinsky, L., and Litasov, K.D. (2015) Revised calibration of the Sm:SrB4O7 pressure sensor using the Sm-Doped yttrium-Aluminum garnet primary pressure scale Journal of Applied Physics, 117, 145902. 22. Ringwood, A.E., and Major, A. (1967) High-pressure reconnaissance investigations in the system Mg2SiO4-MgO-H2O. Earth and Planetary Science Letters, 2, 130-133. 23. Rosasco, G.J., and Blaha, J.J. (1980) Raman micro-probe spectra and vibrational-mode assignments of talc. Applied Spectroscopy, 34, 140-144. 24. Sclar, C.B., and Carrison, L.C. (1966) High-pressure reactions and shear strength of serpentinized dunite. Science, 153, 1285-1286. 25. Schmidt, M.W., and Poli, S. (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163, 361-379. 26. Schmidt, M.W., and Poli, S. (2014). Devolatilization during subduction. In H.D. Holland and K.K. Turekian, Eds., Treatise on Geochemistry, 2nd ed., p. 669-701. Elsevier, Amsterdam. 27. Schmidt, M.W., and Poli, S. Syracuse, E.M., van Keken, P.E., and Abers, G.A. (2010) The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183, 73-90. 28. Ulmer, P., and Trommsdorff, V. (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science, 268, 858-861. 29. Welch, M.D., Pawley, A.R., Ashbrook, S.E., Mason, H.E., and Phillips, B.L. (2006) Si vacancies in the 10 Å phase. American Mineralogist, 91, 1707-1710. 30. Wojdyr, M. (2010) Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 43, 1126-1128. 31. Wunder, B., and Schreyer, W. (1992) Metastability of the 10 Å phase in the system MgO-SiO2-H2O (MSH): What about hydrous MSH phases in subduction zones?. Journal of Petrology, 33, 877-889. 32. Yamamoto, K., and Akimoto, S. (1977) The system MgO-SiO2-H2O at high pressures and temperatures-stability field for hydroxylchondrodite, hydroxyl-clinohumite and 10 Å phase. American Journal of Science, 277, 288-312.