Инд. авторы: Bryanskaya A.V., Malup T.K., Lazareva E.V., Taran O.P., Rozanov A.S., Efimov V.M., Peltek S.E.
Заглавие: The role of environmental factors for the composition of microbial communities of saline lakes in the Novosibirsk region (Russia)
Библ. ссылка: Bryanskaya A.V., Malup T.K., Lazareva E.V., Taran O.P., Rozanov A.S., Efimov V.M., Peltek S.E. The role of environmental factors for the composition of microbial communities of saline lakes in the Novosibirsk region (Russia) // BMC MICROBIOLOGY. - 2016. - Vol.16. - Art.4. - ISSN 1471-2180.
Внешние системы: DOI: 10.1186/s12866-015-0618-y; РИНЦ: 26831439; PubMed: 26822997; SCOPUS: 2-s2.0-84955313641; WoS: 000369817900001;
Реферат: eng: Background: Nothing is currently known about microbial composition of saline lakes of the Novosibirsk region and its dependence on physical-chemical parameters of waters. We studied the structure of microbial communities of saline lakes of the Novosibirsk region and the effect of physical-chemical parameters of waters on microbial communities of these lakes. Results: According to the ion content, the lakes were classified either as chloride or chloride-sulfate types. Water salinity ranges from 4.3 to 290 g L-1. Many diverse microbial communities were found. Filamentous and colonial Cyanobacteria of the genera Scytonema, Aphanocapsa, and/or filamentous Algae dominated in littoral communities. Spatial and temporal organization of planktonic microbial communities and the quantities of Archaea and Bacteria were investigated using fluorescent in situ hybridization. We have found that the dominant planktonic component is represented by Archaea, or, less frequently, by Bacteria. Various phylogenetic groups (Bacteria, Archaea, Algae, and Cyanobacteria) are nonuniformly distributed. The principal component analysis was used to detect environmental factors that affect microorganism abundance. We found the principal components responsible for 71.1 % of the observed variation. It was demonstrated that two-block partial least squares was a better method than principal component analysis for analysis of the data. We observed general relationships between microbial abundance and water salinity. Conclusions: We have performed the first-ever study of the structure of the microbial communities of eleven saline lakes in the Novosibirsk region along with their physical-chemical parameters of waters. Our study demonstrates that saline lakes in the Novosibirsk region contain a unique microbial communities that may become a prolific source of microorganisms for fundamental and applied studies in various fields of ecology, microbiology, geochemistry, and biotechnology, and deserve further metagenomic investigation.
Ключевые слова: SIBERIA; DIVERSITY; CHANY LAKE; KULUNDA STEPPE; ORGANIC-MATTER; MEROMICTIC LAKES; SALT-LAKE; BACTERIAL COMMUNITIES; MOSBY MUD VOLCANO; IN-SITU HYBRIDIZATION; Fluorescent in situ hybridization; Environmental factors; Saline lakes; Microbial communities;
Издано: 2016
Физ. характеристика: 4
Цитирование: 1. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143-69. 2. Moter A, Göbel UB. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Meth. 2000;4:85-112. 3. Daims H, Stoecker K, Wagner M. Fluorescence in situ hybridization for the detection of prokaryotes. In: Osborn AM, Smith CJ, editors. Advanced Methods in Molecular Microbial Ecology. Abingdon: BIOS Scientific Publishers; 2005. p. 213-39. 4. Hahn D, Amann RI, Ludwig W, Akkermans AD, Schleifer KH. Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol. 1992;38:879-87. 5. Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microb. 1997;63:2884-96. 6. Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409:507-10. 7. Fazi S, Amalfitano S, Pernthaler J, Puddu A. Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environ Microbiol. 2005;7:1633-40. 8. Ainsworth TD, Fine M, Blackall LL, Hoegh-Guldberg O. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl Environ Microb. 2006;72:3016-20. 9. Niemann H, Lösekann T, De Beer D, Elvert M, Nadalig T, Knittel K, et al. Novel microbial communities of the Haakon Mosby Mud Volcano and their role as a methane sink. Nature. 2006;443:854-8. 10. Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microb. 2007;73:3348-62. 11. Kallistova AY, Kevbrina MV, Pimenov NV, Rusanov II, Rogozin DY, Wehrli B, et al. Sulfate reduction and methanogenesis in the Shira and Shunet meromictic lakes (Khakasia, Russia). Microbiology. 2006;75:720-6. 12. Maksimenko SY, Zemskaya TI, Pavlova ON, Ivanov VG, Buryukhaev SP. Microbial community of the water column of the Selenga River-Lake Baikal biogeochemical barrier. Microbiology (Mikrobiologiya). 2008;77:587-94. 13. Brukhanov AL, Korneeva VA, Kanapatsky TA, Zakharova EE, Menko EV, Rusanov II, et al. Studying the composition of communities sulfate-reducing bacteria in aerobic waters and the Black Sea chemocline zone using FISH method. Microbiology (Mikrobiologiya). 2011;80:112-21. 14. Kazmin SP. Geomorphology Eastern Kulunda and Baraba. Novosibirsk: RPC of the Joint Institute of Geology, Geophysics and Mineralogy SB RAS; 1997. 15. Andreev YF. On the relationship linear ridge relief with tectonic structures in the north of Western Siberia (the development of permafrost). Geology and Geochemistry (Geologiya i Geohimiya). 1960;3:76-94. 16. Kuz'mina OB, Volkova VS, Gnibidenko ZN, Lebedeva NK. Microphytofossils and magnetostratigraphy of Upper Cretaceous and Cenozoic deposits of the southeastern West Siberian Plain. Geol Geofiz. 2003;44:348-63. 17. Akhmet'ev MA. Problems of Paleogene stratigraphy and paleogeography in the middle latitudes of Eurasia. Russ Geol Geophys. 2011;52:1075-91. 18. Iakovleva AI. Palynological reconstruction of the Eocene marine palaeoenvironments in south of Western Siberia. Acta Palaeobotanica. 2011;51:229-48. 19. Volgin MV, Sipko LL. Physico-geographical and hydrochemical characteristics of Karasuk lakes. In: Krivoshekov GM, editor. The experience of complex study and use Karasuk lakes. Novosibirsk: Nauka; 1982. p. 5-54. 20. Lebedeva MP, Lopukhina OV, Kalinina NV. Specificity of the chemical and mineralogical composition of salts in solonchak playas and lakes of the Kulunda steppe. Eurasian Soil Science. 2008;41:416-28. 21. Bezmaternykh DM. The mineral content of water as a factor of formation of lakes zoobenthos Barabinsk-Kulunda limnobiology area. The world of science, culture, education. 2007;4:7-11. 22. Vesnina LV, Zhuravlev VB, Novoselov VA, Novoselova ZI, Rostovtsev AA, Solovov VP, et al. Water Reservoirs of the Altai Territory: Biologic Productivity and Development Prospects. Novosibirsk: Nauka; 1999. 23. Vasilyev OF, Kazantsev VA, Popov PA, Kirillov VV. General natural characteristics and ecological problems of the Chany-Kulunda Lacustrine System and basin of these lakes. Sibirskiy Ekologicheskiy Zhurnal. 2005;2:167-73. 24. Leonova GA, Bogush AA, Bobrov VA, Bychinsky VA, Trofimova LV, Malikov YI. Ecological-geochemical assessment of salt lakes in the Altai Territory. Geogr Nat Resour. 2007;1:51-9. 25. Oren A. Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol. 2002;39:1-7. 26. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML. Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microb. 2004;70:5258-65. 27. Koizumi Y, Kojima H, Fukui M. Dominant microbial composition and its vertical distribution in saline meromictic lake Kaiike (Japan) as revealed by quantitative oligonucleotide probe membrane hybridization. Appl Environ Microb. 2004;70:4930-40. 28. Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedrós-Alió C. Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol Ecol. 2004;48:57-69. 29. Hahn MW. The microbial diversity of inland waters. Curr Opin Biotechnol. 2006;17:256-61. 30. Maturrano L, Santos F, Rosselló-Mora R, Antón J. Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microb. 2006;72:3887-95. 31. Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan plateau, China. Appl Environ Microb. 2006;72:5478-85. 32. Boujelben I, Gomariz M, Martínez-García M, Santos F, Peña A, López C, et al. Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. Antonie Van Leeuwenhoek. 2012;101:845-57. 33. Vesnina LV, Mitrofanova EY, Lisitsina TS. Plankton of salt lakes of territory of closed channel (south of Western Siberia, Russia). Contemp Probl Ecol (Sibirskiy Ekologicheskiy Zhurnal). 2005;2:221-33. 34. Sorokin DY. Natronofilic aerobic chemolithoautotrophic bacteria from soda lakes. In: Galchenko VF, editor. Proceedings of Winogradsky Institute of microbiology. Moscow: Nauka; 2007. p. 258-75. 35. Kompantseva EI, Komova AV, Rusanov II, Pimenov NV, Sorokin DY. Primary production of organic matter and phototrophic communities in the soda lakes of the Kulunda steppe (Altai krai). Microbiology (Mikrobiologiya). 2009;78:643-9. 36. Lazareva EV, Bryanskaya AV, Taran OP, Kolmogorov YP, Malup TK, Peltek SE, et al. Investigation of element distribution between components of a salt-lake system by SR-XRF. Journal of Surface Investigation. X-ray. Synchrotron and Neutron Techniques. 2012;6:1009-18. 37. Bryanskaya AV, Rozanov AS, Kuklin AL, Malup TK, Lazareva EV, Taran OP, et al. Microbial Diversity in Salt Lakes of Novosibirsk Region. Molecular Identification and Biotyping Paleontological Journal. 2012;46:1068-9. 38. Bryanskaya AV, Rozanov AS, Malup TK, Aleshina TE, Lazareva EV, Taran OP, et al. An integrated study to analyze salt lake microbial community structure (Novosibirsk oblast, Russia). Acta Geologica Sinica (English Edition). 2014;88:61-2. 39. Kirschner AKT, Eiler A, Zechmeister TC, Velimirov B, Herzig A, Mach R, et al. Extremely productive microbial communities in shallow saline pools respond immediately to changing meteorological conditions. Environ Microbiol. 2002;4:546-55. 40. Eiler A, Farnleitner AH, Zechmeister TC, Herzig A, Hurban C, Wesner W, et al. Factors controlling extremely productive heterotrophic bacterial communities in shallow soda pools. Microb Ecol. 2003;46:43-54. 41. Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, et al. The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci U S A. 2007;104:20404-9. 42. Langenheder S, Ragnarsson H. The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology. 2007;88:2154-61. 43. Sommaruga R, Casamayor EO. Bacterial 'cosmopolitanism' and importance of local environmental factors for community composition in remote high-altitude lakes. Freshw Biol. 2009;54:994-1005. 44. Zaitseva SV, Abidueva EY, Buryukhaev SP, Namsaraev BB. Factors controlling the activity of the microbial community of the alkaline lake Beloe (Transbaikal region). Mikrobiologiya. 2012;81:508-16. 45. Masmoudi S, Tastard E, Guermazi W, Caruso A, Morant-Manceau A, Ayadi H. Salinity gradient and nutrients as major structuring factors of the phytoplankton communities in salt marshes. Aquat Ecol. 2015;49:1-19. 46. Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, et al. Microbial biogeography of six salt lakes in inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microb. 2009;75:5750-60. 47. Degermendzhy AG, Zadereev ES, Rogozin DY, Prokopkin IG, Barkhatov YV, Tolomeev AP, et al. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia). Aquat Ecol. 2010;44:619-32. 48. Rogozin DY, Zykov VV, Chernetsky MY, Degermendzhy AG, Gulati RD. Effect of winter conditions on distributions of anoxic phototrophic bacteria in two meromictic lakes in Siberia, Russia. Aquat Ecol. 2009;43:661-72. 49. Pérez MT, Sommaruga R. Temporal changes in the dominance of major planktonic bacterial groups in an alpine lake: discrepancy with their contribution to bacterial production. Aquat Microb Ecol. 2011;63:161-70. 50. Oren A, Seckbach J. Oxygenic photosynthetic organisms in extreme environments. In: Elster J, Seckbach J, Vincent W, Lhotsky O, editors. Algae and extreme environments-ecology and physiology. Beiheft: Nova Hedwigia; 2001. p. 13-31. 51. Post FJ. The microbial ecology of the Great Salt Lake. Microb Ecol. 1977;3:143-65. 52. Zavarzin GA. Development of soda environments as a global process. In: Galchenko VF, editor. Proceedings of Winogradsky Institute of microbiology. Moscow: Nauka; 2007. p. 8-57. 53. Górniak D, Tandyrak R, Parszuto K, Misiun J. Relationships between physico-chemical and microbiological parameters in the monimolimnion of a forest meromictic lake. J Limnol. 2014;73:511-22. 54. Garcia MD, Bonel N. Environmental modulation of the plankton community composition and size-structure along the eutrophic intertidal coast of the Río de la Plata estuary, Argentina. J Limnol. 2014;73:562-73. 55. Wickham SA, Steinmair U, Kamennaya N. Ciliate distributions and forcing factors in the Amundsen and Bellingshausen Seas (Antarctic). Aquat Microb Ecol. 2011;62:215-30. 56. Balser TC. Linking soil microbial communities and ecosystem functioning. Doctoral Dissertation. Berkeley: University of California; 2000. 57. Yurlova NI, Vodyanitskaya SN, Serbina EA, Biserkov VY, Georgiev BB, Chipev NH. Temporal variation in prevalence and abundance of metacercariae in the pulmonate snail Lymnaea stagnalis in Chany Lake, West Siberia, Russia: Long-term patterns and environmental covariates. J Parasitol. 2006;92:249-59. 58. Kipriyanova LM, Yermolaeva NI, Bezmaternykh DM, Dvurechenskaya SY, Mitrofanova EY. Changes in the biota of Chany Lake along a salinity gradient. Hydrobiologia. 2007;576:83-93. 59. Daims H. Use of fluorescence in situ hybridization and the daime image analysis program for the cultivation-independent quantification of microorganisms in environmental and medical samples. Cold Spring Harbor Protocols. 2009;7:pdb-prot5253. 60. Amann RI, Krumholz L, Stahl DA. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990;172:762-70. 61. O'Donnell AG, Whiteley AS. Fluorescent in situ hybridization and the analysis of the single cell. In: Edwards C, editor. Methods in Biotechnology 12: Environmental monitoring of bacteria. New-York: Humana Press Inc; 1999. p. 221-35. 62. Porter KG, Feig YS. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr. 1980;25:943-8. 63. Komárek J, Anagnostidis K. Chroococcales Cyanoprokaryota. Gustav Fischer: Jena; 1998. 64. Komárek J, Anagnostidis K. Oscillatoriales Cyanoprokaryota. Jena: Elsevier; 2005. 65. Abdi H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdisciplinary Reviews: Computational Statistics. 2010;2:97-106. 66. Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontol Electron. 2001;4:1-9.