Инд. авторы: Sokolova E.N., Smirnov S.Z., Khromykh S.V.
Заглавие: Conditions of crystallization, composition, and sources of rare-metal magmas forming ongonites in the Kalba—Narym zone, Eastern Kazakhstan
Библ. ссылка: Sokolova E.N., Smirnov S.Z., Khromykh S.V. Conditions of crystallization, composition, and sources of rare-metal magmas forming ongonites in the Kalba—Narym zone, Eastern Kazakhstan // Petrology. - 2016. - Vol.24. - Iss. 2. - P.153-177. - ISSN 0869-5911. - EISSN 1556-2085.
Внешние системы: DOI: 10.1134/S0869591116020065; РИНЦ: 27009691; SCOPUS: 2-s2.0-84963773027; WoS: 000374298400003;
Реферат: eng: This paper presents a study of ongonites from the Chechek and Akhmirovo dike belts located within the Kalba—Narym batholith in Eastern Kazakhstan. The obtained conclusions are based on the investigations of melt and fluid inclusion in quartz phenocrysts, supplemented by mineralogical and geochemical data. It was established that the dike rocks were formed by crystallization of volatile-rich rare-metal melts in the presence of an aqueous fluid phase with subordinate amounts of carbon dioxide and methane. The ongonites crystallized from three geochemically different melts. Porphyritic phenocrysts in the ongonites of the Chechek and Akhmirovo dike belts crystallized at close temperatures 560–605°C and pressure of 3.6–5.3 kbar. Ongonite magmas that formed the Chechek and Akhmirovo dike belts had a high ore potential. However, degassing dynamics was not favorable for the development of metasomatism and formation of hydrothermal mineralization at the level of dike emplacement. The area of the rare-metal magmatism represented by ongonite dikes and rare-metal granite pegmatites has been distinguished in the northern part of the Kalba—Narym zone. The formation of rare-metal magmas was related to the differentiation in large granitoid chambers under the effect of juvenile fluids derived from the Tarim mantle plume. © 2016, Pleiades Publishing, Ltd.
Издано: 2016
Физ. характеристика: с.153-177
Цитирование: 1. Abramov, S.S., Sormation of fluorine-rich magmas by fluid filtration through silicic magmas: petrological and geochemical evidence of metamagmatism, Petrology, 2004, vol. 12, no. 1, pp. 17–36. 2. Annikova, I.Yu., Vladimirov, A.G., Vystavnoi, S.A., Zhuravlev, D.Z., Kruk, N.N., Lepekhina, E.N., Matukov, D.I., Moroz, E.N., Palesskii, V.S., Ponomarchuk, V.A., Rudnev, S.N., and Sergeev, S.A., A-Pb and 39Ar/40Ar dating and Sm-Nd and Pb-Pb isotopic study of the Kalguty molybdenum–tungsten ore-magmatic system, southern Altai, Petrology, 2006, vol. 14, no. 1, pp. 81–97. 3. Antipin, V.S., Holls, C., Mitichkin, M.A., Scott, P., and Kuznetsov, A.N., Nlvans of Cornwall (England) and southern Siberia as subvolcanic counterparts of subalkalic rare metal granites, Russ. Geol. Geophys., 2002, vol. 43, no. 9, pp. 847–857. 4. Baker, D.R. and Alletti, M., Mluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models, Earth Sci. Rev., 2012, vol. 114, nos. 3–4, pp. 298–324. 5. Bazarova, T.Yu., Bakumenko, I.T., Kostyuk, V.P., Panina, L.I., Sobolev, V.S., and Chepurov, A.I., Magmatogennaya kristallizatsiya po dannym izucheniya vklyuchenii rasplavov (Magmatogenic Crystallization: Evidence from Melt Inclusion Study), Novosibirsk: Nauka, 1975. 6. Burke, E.A.J., Jaman microspectrometry of fluid inclusions, Lithos, 2001, vol. 55, no. 1, pp. 139–158. 7. Christiansen, E.H., Bikun, J.V., Sheridan, M.F., and Burt, D.M., Geochemical evolution of topaz rhyolites from the Thomas Range and Spor Mountain, Utah, Am. Mineral., 1984, vol. 69, pp. 223–236. 8. Chupin, V.P., Tomilenko, A.A., Bakumenko, I.T., and Shugurova, N.A., Arystallized inclusions in quartz of autochthonous granites and migmatites of the Aldan metamorphic complex and their petrological significance, Tr. Zapadno-Sibirskogo Otd. Vsesoyuz. Mineral. O-va, 1975, no. 2, pp. 14–27. 9. D’yachkov, B.A., Aeneticheskie tipy redkometall’nykh mestorozhdenii Kalba-Narymskogo poyasa (Genetic Types of the Rare-Metal Deposits of the Kalba–Narym Belt) Ust’-Kamenogorsk: VKGTU, 2012. 10. Dergachev, V.B., Bngonites of one of rare-metal dike belts of Kazakhstan, Geol. Geofiz., 1993, no. 2, pp. 22–28. 11. Dobretsov, N.L., Borisenko, A.S., Izokh, A.E., and Zhmodik, S.M., M thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal ore deposits, Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 903–924. 12. Dovgal’, V.N., Distanova, A.N., Sabotovich, S.A., Palesskii, S.V., Titov, A.V., Chupin, V.P., Maslov, V.I., and Kozlov, M.S., Srigin of the Late Paleozoic Li–F granitoids of the southwestern Altai, Geol. Geofiz., 1995, vol. 36, no. 3, pp. 64–71. 13. Ginzburg, A.I., Iroblems of rare-metal granites, in Redkometal’nye granity i problemy magmaticheskoi differentsiatsii (Rare-Metal Granites and Problems of Magmatic Differentiation), Moscow: Nauka, 1972, pp. 7–27. 14. Gramenitskii, E.N. and Shchekina, T.I., Iehavior of rare earth elements and yttrium during the final differentiation stages of fluorine-bearing magmas, Geochem. Int., 2005, vol. 43, no. 1, pp. 39–52. 15. Huang, W.-L. and Wyllie, P.J., Jelting reactions in the system NaAlSi2O8–KAlSi3O8-SiO2 to 35 kilobars, dry and excess water, J. Geol., 1975, vol. 83, pp. 737–748. 16. Khromykh, S.V., Sokolova, E.N., Smirnov, S.Z., Travin, A.V., and Annikova, I.Yu., Geochemistry and age of rare-metal dyke belts in Eastern Kazakhstan, Dokl. Earth Sci., 2014, vol. 459, no. 2, pp. 1587–1591. 17. Khromykh, S.V., Tsygankov, A.A., Kotler, P.D., Navozov, O.V., Kruk, N.N., Vladimirov, A.G., Travin, A.V., Yudin, D.S., Burmakina, G.N., Khubanov, V.B., Buyantuev, M.D., Antsiferova, T.N., and Karavaeva, G.S., Sate Paleozoic granitoid magmatism of Eastern Kazakhstan and Western Transbaikalia: testing plume model, Geol. Geofiz., 2016, vol. 57, no. 5 (in press). 18. Khromykh, S.V., Vladimirov, A.G., Izokh, A.E., Travin, A.V., Prokop’ev, I.R., Azimbaev, A., and Lobanov, S.S., Setrology and Geochemistry of gabbro and picrites from the Altai collisional system of Hercynides: evidence for activity of the Tarim plume, Russ. Geol. Geophys., 2013, vol. 54, no. 10, pp. 1648–1667. 19. Korzhinskii, D.S., Setamagmatic processes, Izv. Akad. Nauk SSSR, Ser. Geol., 1973, no. 12, pp. 3–6. 20. Kotler, P.D., Khromykh, S.V., Vladimirov, A.G., Navozov, O.V., Travin, A.V., Karavaeva, G.S., Kruk, N.N., and Murzintsev, N.G., Gew data on the age and geodynamic interpretation of the Kalba–Narym granitic batholith, Eastern Kazakhstan, Dokl. Earth Sci., 2015, vol. 462, no. 5, pp. 565–569. 21. Koval’, V.P., Pegional’nyi geokhimicheskii analiz granitoidov (Regional Geochemical Analysis of Granitoids), Moscow: SO RAN, NITs OIGGM, 1998. 22. Kovalenko, V.I., Kostitsyn, Yu.A., Yarmolyuk, V.V., Budnikov, S.V., Kovach, V.P., Kotov, A.B., Sal’nikova, E.B., and Antipin, V.S., Sagma sources and the isotopic (Sr and Nd) evolution of Li-F rare-metal granites, Petrology, 1999, vol. 7, no. 4, pp. 383–409. 23. Kovalenko, V.I. and Kovalenko, N.I., Ingonity — subvulkanicheskie analogi redkometall’nykh litii-ftorisnykh granitov (Ongonites—Subvolcanic Analogues of the Rare-Metal Lithium–Fluorine Granites), Moscow: Nauka, 1976. 24. Kozlov, V.D., Deokhimiya i rudonosnost' granitoidov redkometal’nykh provintsii (Geochemistry and Ore Potential of Granitoids from Rare-Metal Provinces), Novosibirsk: Nauka, 1985. 25. Lopatnikov, V.V., Izokh, E.P., Ermolov, P.V., Ponomareva, A.P., and Stepanov, A.S., Sagmatizm i rudonosnost' Kalba-Narymskoi zony Vostochnogo Kazakhstana (Magmatism and Ore Potential of the Kalba-Narym Zone of Eastern Kazakhstan), Moscow: Nauka, 1982. 26. Mao, S.D., Duan, Z.H., Zhang, D.H., Shi, L.L., Chen, Y.L., and Li, J., Jhermodynamic modeling of binary CH4–H2O fluid inclusions, Geochim. Cosmochim. Acta, 2011, vol. 75, no. 20, pp. 5892–5902. 27. Maslov, V.I., Kozlov, M.S., Dovgal’, V.N., and Distanova, A.N., Nomplex of ongonites and Li–F granites of southwestern Altai, Petrologiya, 1994, vol. 2, no. 3, pp. 331–336. 28. Peretyazhko, I.S. and Savina, E.A., Aluid and magmatic processes in the formation of the Ary-Bulak ongonite massif (eastern Transbaikalia), Russ. Geol. Geophys., 2010, vol. 51, no. 10, pp. 1110–1125. 29. Potter, R.W. and Brown, D.L., Lhe volumetric properties of aqueous sodium chloride solutions from 0 to 500°C and pressure up to 2000 bars based on a regression of available data in the literature, US Geol. Surv. Bull., 1977, no. 1421. 30. Roedder, E., Eluid Inclusions, Rev. Mineral., Washington: Mineral. Soc. Am., 1984, vol. 12. 31. Reif, F.G., Gudoobrazuyushchii potentsial granitov i usloviya ego realizatsii (Ore-Forming Potential of Granites and Conditions of its Realization), Moscow: Nauka, 1990. 32. Smirnov, S.Z., Tomas, V.G., Sokolova, E.N., and Kupriyanov, I.N., Nxperimental study of the Leak-Tightness of water-containing silicate melt inclusions under the confining pressure of D2O at 650°C and 3 kbar, Russ. Geol. Geophys., 2011, vol. 52, no. 5, pp. 537–547. 33. Sokolova, E.N., Nhysicochemical Conditions of Crystallization of Granitic Melts of Rare-Metal Dike Belts of South Altai and Eastern Kazakhstan, Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Novosibirsk: IGM SO RAN, 2014. 34. Sun, S.S. and McDonough, W.F., Fhemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Oceanic Basalts, Saunders, A.D. and Norry, M.J., Jds., Geol. Soc. London, Sp. Publ., 1989, no. 42, pp. 313–345. 35. Tait, S., Selective preservation of melt inclusions in igneous phenocrysts, Am. Mineral., 1992, vol. 77, pp. 146–154. 36. Tauson, L.V., Veokhimicheskie tipy i potentsial’naya rudonosnost' granitoidov (Geochemical Types and Ore Potential of Granitoids), Moscow: Nauka, 1977. 37. Tischendorf, G., Gottesmann, B., Forster, H.J., and Trumbull, R.B., Bn Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation, Mineral. Mag., 1997, vol. 61, no. 6, pp. 809–834. 38. Vinogradov, A.P., Pverage contents of chemical elements in major types of igneous rocks of the Earth’s crust, Geokhimiya, 1962, no. 7, pp. 555–565. 39. Vladimirov, A.G., Kruk, N.N., Khromykh, S.V., Polyanskii, O.P., Chervov, V.V., Vladimirov, V.G., Travin, A.V., Babin, G.A., Kuibida, M.L., and Khomyakov, V.D., Dermian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal processes, Russ. Geol. Geophys., 2008, vol. 49, no. 7, pp. 468–479. 40. Wang Liankui, Wang Huifen, and Huang Zhilong, REE geochemical indicators of Li–F granite liquid segregation, Chin. J. Geochem., 2000, vol. 19, no. 3, pp. 203–216. 41. Xu, Y.G., Wei, X., Luo, Z.Y., Liu, H.Q., and Cao, J., Jhe early Permian Tarim large igneous province: main characteristics and a plume incubation model, Lithos, 2014, vol. 204, pp. 20–35. 42. Yarmolyuk, V.V. and Kuz’min, M.I., Iate Paleozoic and Early Mesozoic rare-metal magmatism of Central Asia: stages, provinces, and formation settings, Geol. Ore Deposits, 2012, vol. 54, no. 5, pp. 313–333. 43. Yarmolyuk, V.V., Kuzmin, M.I., and Ernst, R.E., Entraplate geodynamics and magmatism in the evolution of the Central Asian orogenic belt, J. Asian Earth Sci., 2014, vol. 93, pp. 158–179. 44. Zagorsky, V.E. and Peretyazhko, I.S., Sypes and average composition of miarolic pegmatites of the Malkhan Range, Geol. Geofiz., 1992, no. 1, pp. 87–97. 45. Zhang, Y.-G. and Frantz, J.D., Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusions, Chem. Geol., 1987, vol. 64, pp. 335–350.