Инд. авторы: Malkov M.A., Sagdeev R.Z., Dudnikova G.I., Liseykina T.V., Diamond P.H., Papadopoulos K., Liu C.S., Su J.J.
Заглавие: Ion-acoustic shocks with self-regulated ion reflection and acceleration
Библ. ссылка: Malkov M.A., Sagdeev R.Z., Dudnikova G.I., Liseykina T.V., Diamond P.H., Papadopoulos K., Liu C.S., Su J.J. Ion-acoustic shocks with self-regulated ion reflection and acceleration // Physics of Plasmas. - 2016. - Vol.23. - Iss. 4. - Art.043105. - ISSN 1070-664X. - EISSN 1089-7674.
Внешние системы: DOI: 10.1063/1.4945649; РИНЦ: 27155766; SCOPUS: 2-s2.0-84966349518; WoS: 000375855500057;
Реферат: eng: An analytic solution describing an ion-acoustic collisionless shock, self-consistently with the evolution of shock-reflected ions, is obtained. The solution extends the classic soliton solution beyond a critical Mach number, where the soliton ceases to exist because of the upstream ion reflection. The reflection transforms the soliton into a shock with a trailing wave and a foot populated by the reflected ions. The solution relates parameters of the entire shock structure, such as the maximum and minimum of the potential in the trailing wave, the height of the foot, as well as the shock Mach number, to the number of reflected ions. This relation is resolvable for any given distribution of the upstream ions. In this paper, we have resolved it for a simple "box" distribution. Two separate models of electron interaction with the shock are considered. The first model corresponds to the standard Boltzmannian electron distribution in which case the critical shock Mach number only insignificantly increases from M approximate to 1.6 (no ion reflection) to M approximate to 1.8 (substantial reflection). The second model corresponds to adiabatically trapped electrons. They produce a stronger increase, from M approximate to 3.1 to M approximate to 4.5. The shock foot that is supported by the reflected ions also accelerates them somewhat further. A self-similar foot expansion into the upstream medium is described analytically. (C) 2016 AIP Publishing LLC.
Ключевые слова: PROTON; ORIGIN; PLASMA; COSMIC-RAYS; SUPERNOVA-REMNANTS; QUASIPARALLEL SHOCKS; PARTICLE-ACCELERATION; COLLISIONLESS SHOCKS; INJECTION; WAVES;
Издано: 2016
Физ. характеристика: 043105
Цитирование: 1. L. Accardo, M. Aguilar, D. Aisa, A. Alvino, G. Ambrosi, K. Andeen, L. Arruda, N. Attig, P. Azzarello, A. Bachlechner et al., " High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station," Phys. Rev. Lett. 113 (12), 121101 (2014). 10.1103/PhysRevLett.113.121101 2. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, L. Bonechi, M. Bongi, V. Bonvicini, S. Borisov, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, P. Carlson, M. Casolino, G. Castellini, L. Consiglio, M. P. De Pascale, C. De Santis, N. De Simone, V. Di Felice, A. M. Galper, W. Gillard, L. Grishantseva, G. Jerse, A. V. Karelin, S. V. Koldashov, S. Y. Krutkov, A. N. Kvashnin, A. Leonov, V. Malakhov, V. Malvezzi, L. Marcelli, A. G. Mayorov, W. Menn, V. V. Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, N. Nikonov, G. Osteria, F. Palma, P. Papini, M. Pearce, P. Picozza, C. Pizzolotto, M. Ricci, S. B. Ricciarini, L. Rossetto, R. Sarkar, M. Simon, R. Sparvoli, P. Spillantini, Y. I. Stozhkov, A. Vacchi, E. Vannuccini, G. Vasilyev, S. A. Voronov, Y. T. Yurkin, J. Wu, G. Zampa, N. Zampa, and V. G. Zverev, " PAMELA measurements of cosmic-ray proton and helium spectra," Science 332, 69 (2011). 10.1126/science.1199172 3. A. R. Bell, " Particle acceleration by shocks in supernova remnants," Braz. J. Phys. 44, 415-425 (2014). 10.1007/s13538-014-0219-5 4. V. S. Berezinskii, S. V. Bulanov, V. A. Dogiel, and V. S. Ptuskin, Astrophysics of Cosmic Rays (North-Holland, Amsterdam, 1990). 5. R. Blandford and D. Eichler, " Particle acceleration at astrophysical shocks-A theory of cosmic-ray origin," Phys. Rep. 154, 1-75 (1987). 10.1016/0370-1573(87)90134-7 6. R. Blandford, P. Simeon, and Y. Yuan, " Cosmic ray origins: An introduction," Nucl. Phys. B, Proc. Suppl. 256, 9-22 (2014). 10.1016/j.nuclphysbps.2014.10.002 7. S. V. Bulanov, T. Z. Esirkepov, V. S. Khoroshkov, A. V. Kuznetsov, and F. Pegoraro, " Oncological hadrontherapy with laser ion accelerators," Phys. Lett. A 299, 240-247 (2002). 10.1016/S0375-9601(02)00521-2 8. D. Burgess, E. Möbius, and M. Scholer, " Ion acceleration at the Earth's bow shock," Space Sci. Rev. 173, 5-47 (2012). 10.1007/s11214-012-9901-5 9. D. Caprioli, A.-R. Pop, and A. Spitkovsky, " Simulations and theory of ion injection at non-relativistic collisionless shocks," Astrophys. J. Lett. 798, L28 (2015). 10.1088/2041-8205/798/2/L28 10. L. O'C. Drury, " Origin of cosmic rays," Astropart. Phys. 39, 52-60 (2012). 10.1016/j.astropartphys.2012.02.006 11. J. P. Edmiston, C. F. Kennel, and D. Eichler, " Escape of heated ions upstream of quasi-parallel shocks," Geophys. Res. Lett. 9, 531-534, doi: 10.1029/GL009i005p00531 (1982). 12. F. Fiuza, A. Stockem, E. Boella, R. A. Fonseca, L. O. Silva, D. Haberberger, S. Tochitsky, W. B. Mori, and C. Joshi, " Ion acceleration from laser-driven electrostatic shocks," Phys. Plasmas 20 (5), 056304 (2013). 10.1063/1.4801526 13. T. K. Gaisser, T. Stanev, and S. Tilav, " Cosmic ray energy spectrum from measurements of air showers," Front. Phys. 8, 748-758 (2013). 10.1007/s11467-013-0319-7 14. M. Gedalin, M. Liverts, and M. A. Balikhin, " Distribution of escaping ions produced by non-specular reflection at the stationary quasi-perpendicular shock front," J. Geophys. Res. (Space Phys.) 113, A05101 (2008). 10.1029/2007JA012894 15. F. Guo and J. Giacalone, " The acceleration of thermal protons at parallel collisionless shocks: Three-dimensional hybrid simulations," Astrophys. J. 773, 158 (2013). 10.1088/0004-637X/773/2/158 16. A. V. Gurevich, " Distribution of captured particles in a potential well in the absence of collisions," Sov. J. Exp. Theor. Phys. 26, 575 (1968). 17. A. V. Gurevich and L. P. Pitaevskii, " Non-linear dynamics of a rarefied ionized gas," Prog. Aerosp. Sci. 16, 227-272 (1975). 10.1016/0376-0421(75)90016-0 18. D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, " Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams," Nat. Phys. 8, 95-99 (2012). 10.1038/nphys2130 19. A. M. Hillas, " Topical review: Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?," J. Phys. G: Nucl. Phys. 31, R95-R131 (2005). 10.1088/0954-3899/31/5/R02 20. C. F. Kennel, J. P. Edmiston, and T. Hada, " A quarter century of collisionless shock research," in Collisionless Shocks in the Heliosphere: A Tutorial Review, Geophysical Monograph Series Vol. 34 (American Geophysical Union, Washington, DC, 1985), pp. 1-36. 21. H. Kucharek and M. Scholer, " Origin of diffuse superthermal ions at quasi-parallel supercritical collisionless shocks," J. Geophys. Res. 96, 21195, doi: 10.1029/91JA02321 (1991). 22. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, 1987). 23. M. A. Lee, V. D. Shapiro, and R. Z. Sagdeev, " Pickup ion energization by shock surfing," J. Geophys. Res. 101, 4777-4790, doi: 10.1029/95JA03570 (1996). 24. T. V. Liseykina, G. I. Dudnikova, V. A. Vshivkov, and M. A. Malkov, " Ion-acoustic shocks with reflected ions: modelling and particle-in-cell simulations," J. Plasma Phys. 81, 10 (2015). 10.1017/S002237781500077X 25. A. Macchi, A. Sgattoni, S. Sinigardi, M. Borghesi, and M. Passoni, " Advanced strategies for ion acceleration using high-power lasers," Plasma Phys. Controlled Fusion 55 (12), 124020 (2013). 10.1088/0741-3335/55/12/124020 26. A. Macchi, M. Borghesi, and M. Passoni, " Ion acceleration by superintense laser-plasma interaction," Rev. Mod. Phys. 85, 751-793 (2013). 10.1103/RevModPhys.85.751 27. M. A. Malkov, " Quasilinear theory of plasma waves in a large-amplitude monochromatic wave," Sov. J. Plasma Phys. 8, 872-883 (1982). 28. M. A. Malkov, " Ion leakage from quasiparallel collisionless shocks: Implications for injection and shock dissipation," Phys. Rev. E 58, 4911-4928 (1998). 10.1103/PhysRevE.58.4911 29. M. A. Malkov and L. O'C. Drury, " Nonlinear theory of diffusive acceleration of particles by shock waves," Rep. Prog. Phys. 64, 429-481 (2001). 10.1088/0034-4885/64/4/201 30. M. A. Malkov and H. J. Völk, " Theory of ion injection at shocks," Astron. Astrophys. 300, 605-626 (1995). 31. M. A. Malkov, P. H. Diamond, and R. Z. Sagdeev, " Proton-helium spectral anomaly as a signature of cosmic ray accelerator," Phys. Rev. Lett. 108 (8), 081104 (2012). 10.1103/PhysRevLett.108.081104 32. Y. V. Medvedev, " Ion-acoustic soliton in a plasma with finite-temperature ions," Plasma Phys. Rep. 35, 62-75 (2009). 10.1134/S1063780X09010085 33. S. S. Moiseev and R. Z. Sagdeev, " Collisionless shock waves in a plasma in a weak magnetic field," J. Nucl. Energy 5, 43-47 (1963). 10.1088/0368-3281/5/1/309 34. G. A. Mourou, T. Tajima, and S. V. Bulanov, " Optics in the relativistic regime," Rev. Mod. Phys. 78, 309-371 (2006). 10.1103/RevModPhys.78.309 35. C. A. J. Palmer, N. P. Dover, I. Pogorelsky, M. Babzien, G. I. Dudnikova, M. Ispiriyan, M. N. Polyanskiy, J. Schreiber, P. Shkolnikov, V. Yakimenko, and Z. Najmudin, " Monoenergetic proton beams accelerated by a radiation pressure driven shock," Phys. Rev. Lett. 106, 014801 (2011). 10.1103/PhysRevLett.106.014801 36. K. Papadopoulos, " Microinstabilities and anomalous transport," in Collisionless Shocks in the Heliosphere: A Tutorial Review, Geophysical Monograph Series Vol. 34 (American Geophysical Union, Washington, DC, 1985), pp. 59-90. 37. J. C. Polf and K. Parodi, " Imaging particle beams for cancer treatment," Phys. Today 68 (10), 28-33 (2015). 10.1063/PT.3.2945 38. R. Z. Sagdeev, " Cooperative phenomena and shock waves in collisionless plasmas," Rev. Plasma Phys. 4, 23 (1966). 39. M. Scholer, H. Kucharek, and C. Kato, " On ion injection at quasiparallel shocks," Phys. Plasmas 9, 4293-4300 (2002). 10.1063/1.1508441 40. D. A. Tidman and N. A. Krall, Shock Waves in Collisionless Plasmas, Wiley Series in Plasma Physics (Wiley-Interscience, 1971), ISBN: 9780471867852. 41. L. C. Woods, " On double-structured, perpendicular, magneto-plasma shock waves," Plasma Phys. 13, 289-302 (1971). 10.1088/0032-1028/13/4/302 42. G. P. Zank, H. L. Pauls, I. H. Cairns, and G. M. Webb, " Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks," J. Geophys. Res. 101, 457-478, doi: 10.1029/95JA02860 (1996). 43. G. P. Zank, W. K. M. Rice, J. A. Le Roux, I. H. Cairns, and G. M. Webb, " The 'injection problem' for quasiparallel shocks," Phys. Plasmas 8, 4560-4576 (2001). 10.1063/1.1400125 44. In fact, almost all of them, when Ti / Te → 0.