Инд. авторы: Lysyak A.S., Ryabko B.Y.
Заглавие: Time series prediction based on data compression methods
Библ. ссылка: Lysyak A.S., Ryabko B.Y. Time series prediction based on data compression methods // Problems of Information Transmission. - 2016. - Vol.52. - Iss. 1. - P.92-99. - ISSN 0032-9460. - EISSN 1608-3253.
Внешние системы: DOI: 10.1134/S0032946016010075; РИНЦ: 27155840; SCOPUS: 2-s2.0-84966388998; WoS: 000376106900007;
Реферат: eng: We propose efficient ("fast" and low memory consuming) algorithms for universal-coding-based prediction methods for real-valued time series. Previously, for such methods it was only proved that the prediction error is asymptotically minimal, and implementation complexity issues have not been considered at all. The provided experimental results demonstrate high precision of the proposed methods.
Ключевые слова: Universal coding; Time series prediction; Prediction methods; Prediction errors; Low memory; High-precision; Compression methods; Time series; Forecasting; Algorithms; Implementation complexity; Data compression;
Издано: 2016
Физ. характеристика: с.92-99
Цитирование: 1. Poskitt, D.S. and Tremayne, A.R., The Selection and Use of Linear and Bilinear Time Series Models, Int. J. Forecasting, 1986, vol. 2, no. 1, pp. 101–114. 2. Tong, H., Non-linear Time Series: A Dynamical System Approach, Oxford, UK: Clarendon, 1990. 3. Tong, H., Threshold Models in Non-linear Time Series Analysis, Lect. Notes Statist., vol. 21, Berlin: Springer, 1983. 4. Tong, H. and Lim, K.S., Threshold Autoregression, Limit Cycles and Cyclical Data, J. Roy. Statist. Soc. Ser. B, 1980, vol. 42, no. 3. 245–292. 5. Engle, R.F., Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica, 1982, vol. 50, pp. 987–1007. 6. Bontempi, G., Local Learning Techniques for Modeling, Prediction and Control, PhD Thesis, IRIDIA, Université Libre de Bruxelles, Belgium, 1999. 7. Zhang, G., Patuwo, B.E., and Hu, M.Y., Forecasting with Artifcial Neural Networks: The State of the Art, Int. J. Forecasting, 1998, vol. 14, no. 1, pp. 35–62. 8. Cheng, H., Tan, P.-N., Gao, J., and Scripps, J., Multistep-Ahead Time Series Prediction, Advances in Knowledge Discovery and Data Mining (Proc. 10th Pacific-Asia Conf. PAKDD’2006, Singapore, Apr. 9–12, 2006), Ng, W.K., Kitsuregawa, M., Li, J., and Chang, K., Eds., Lect. Notes Comp. Sci., vol. 3918, Berlin: Springer, 2006, pp. 765–774. 9. Ryabko, B.Ya., Prediction of Random Sequences and Universal Coding, Probl. Peredachi Inf., 1988, vol. 24, no. 2, pp. 3–14 [Probl. Inf. Trans. (Engl. Transl.), 1988, vol. 24, no. 2, pp. 87–96]. 10. Ryabko, B.Ya. and Monarev, V.A., Experimental Investigation of Forecasting Methods Based on Data Compression Algorithms, Probl. Peredachi Inf., 2005, vol. 41, no. 1, pp. 74–78 [Probl. Inf. Trans. (Engl. Transl.), 2005, vol. 41, no. 1, pp. 65–69]. 11. Ryabko, B., Compression-Based Methods for Nonparametric Prediction and Estimation of Some Characteristics of Time Series, IEEE Trans. Inform. Theory, 2009, vol. 55, no. 9, pp. 4309–4315. 12. Cover, T.M. and Thomas, J.A., Elements of Information Theory, Hoboken, NJ: Wiley, 2006, 2nd ed. 13. Ryabko, B.Ya., Twice-Universal Coding, Probl. Peredachi Inf., 1984, vol. 20, no. 3, pp. 24–28 [Probl. Inf. Trans. (Engl. Transl.), 1984, vol. 20, no. 3, pp. 173–177]. 14. Krichevskii, R.E., The Relation Between Redundancy Coding and Reliability of Information from a Source, Probl. Peredachi Inf., 1968, vol. 4, no. 3, pp. 48–57 [Probl. Inf. Trans. (Engl. Transl.), 1968, vol. 4, no. 3, pp. 37–45]. 15. Krichevsky, R., Universal Compression and Retrieval, Dordrecht: Kluwer, 1993. 16. Ryabko, B.Y., Astola, J., and Gammerman, A., Adaptive Coding and Prediction of Sources with Large and Infinite Alphabets, IEEE Trans. Inform. Theory, 2008, vol. 54, no. 8, pp. 3808–3813. 17. Gasoline and Diesel Fuel Update, Independent Statistics & Analysis, U.S. Energy Information Administration, http://wwweiagov/petroleum/gasdiesel/.