Инд. авторы: Skidin A.S., Yarutkina I.A., Shtyrina O.V., Fedoruk M.P.
Заглавие: Theoretical analysis of the energy evolution in dissipative soliton fiber lasers
Библ. ссылка: Skidin A.S., Yarutkina I.A., Shtyrina O.V., Fedoruk M.P. Theoretical analysis of the energy evolution in dissipative soliton fiber lasers // Optoelectronics, Instrumentation and Data Processing. - 2015. - Vol.51. - Iss. 6. - P.577-581. - ISSN 8756-6990. - EISSN 1934-7944.
Внешние системы: DOI: 10.3103/S8756699015060084; РИНЦ: 27137429; SCOPUS: 2-s2.0-84961384573; WoS: 000421015300008;
Реферат: eng: Theoretical results on the energy evolution in ring and linear cavities of dissipative soliton fiber lasers are analyzed. The correctness of the theoretical results is confirmed by mathematical modeling. © 2015, Allerton Press, Inc.
Ключевые слова: laser theory; linear cavity; mathematical modeling; ring cavity; Fiber lasers; Laser theory; Mathematical models; Solitons; Ring cavities; Linear cavity; Energy evolutions; Dissipative solitons;
Издано: 2015
Физ. характеристика: с.577-581
Цитирование: 1. S. K. Turitsyn, “Theory of Energy Evolution in Laser Cavities with Saturated Gain and Non-Saturated Loss,” Opt. Express. 17 (14), 11898–11904 (2009). 2. S. K. Turitsyn, B. Bale, and M. P. Fedoruk, “Dispersion-Managed Solitons in Fiber Systems and Lasers,” Phys. Rep. 521 (4), 135–203 (2012). 3. I. A. Yarutkina, O. V. Shtyrina, M. P. Fedoruk, and S. K. Turitsyn, “Numerical Modeling of Fiber Lasers with Long and Ultra-Long Ring Cavity,” Opt. Express. 21 (10), 12942–12950 (2013). 4. B. G. Bale, O. G. Okhotnikov, and S. K. Turitsyn, “Modeling and Technologies of Ultrafast Fiber Lasers,” in Fiber Lasers, Ed. by O. G. Okhotnikov (Wiley-VCH, Weinheim, 2012). 5. P. Grelu and N. Akhmediev, “Dissipative Solitons for Mode-Locked Lasers,” Nature Photonics, No. 6, 84–92 (2012). 6. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the Study of Pulse Evolution in Ultra-Short Pulse Mode-Locked Fiber Lasers by Numerical Simulations,” Opt. Express. 15 (13), 8252–8262 (2007). 7. F. W. Wise, A. Chong, and W. H. Renninger, “High-Energy Femtosecond Fiber Lasers Based on Pulse Propagation at Normal Dispersion,” Laser Photon. Rev. 2 (1–2), 58–73 (2008). 8. O. Shtyrina, M. Fedoruk, S. Turitsyn, et al., “Evolution and Stability of Pulse Regimes in SESAM-Mode-Locked Femtosecond Fiber Lasers,” JOSA B 26 (2), 346–352 (2009). 9. H. A. Haus, “Theory of Mode Locking with a Slow Saturable Absorber,” IEEE J. Quant. Electron. 11 (9), 736–746 (1975). 10. A. E. Siegman, Lasers (University Science Books, Sausalito, 1986). 11. R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative Dispersion-Managed Soliton 2 µm Thulium/Holmium Fiber Laser,” Opt. Lett. 36 (5), 609–611 (2011). 12. S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source using Mode-Locked Tm-Ho Fiber Laser,” IEEE Photon. Technol. Lett. 19 (12), 934–936 (2007). 13. I. A. Yarutkina and O. V. Shtyrina, “Mathematical Modeling of Dispersion-Managed Thulium/Holmium Fiber Lasers,” Quant. Electron. 43 (11), 1019–1023 (2013). 14. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers,” IEEE J. Quant. Electron. 31 (3), 591–603 (1995). 15. D. S. Kharenko and S. A. Babin, “Generation of Dissipative Solitons in Fiber Femtosecond Lasers,” Avtometriya 49 (4), 100–120 (2013) [Optoelectron., Instrum. Data Process. 49 (4), 399-415 (2013)].