Инд. авторы: Шокин Ю.И., Потапов В.П., Попов С.Е., Гиниятуллина О.Л.
Заглавие: Спутниковая радарная интерферометрия: информационно-вычислительные аспекты
Библ. ссылка: Шокин Ю.И., Потапов В.П., Попов С.Е., Гиниятуллина О.Л. Спутниковая радарная интерферометрия: информационно-вычислительные аспекты // Вычислительные технологии. - 2016. - Т.21. - № 1. - С.141-151. - ISSN 1560-7534. - EISSN 2313-691X.
Внешние системы: РИНЦ: 25644536;
Реферат: rus: Рассмотрены основные методы обработки радарных снимков, получаемых с помощью космических аппаратов, программные комплексы для их анализа, их достоинства и недостатки. Работа создаваемой информационно-вычислительной системы геодинамического мониторинга проиллюстрирована на примере Кузбасского угольного бассейна. Описано применение методов морфологического анализа топографических поверхностей при обработке радарных снимков, позволяющих получать дополнительную информацию о динамике природных и техногенных процессов. Рассмотрена схема потоковой обработки изображений с использованием методов BIG DATA, которая существенно сокращает время вычислений на отдельных этапах анализа снимков и позволяет создавать гибкие распределенные вычислительные комплексы для решения различных задач.
eng: The radar interferometry methods for processing of radar images are considered. The basic advantages of radar imagery applied to optoelectronic imagery for solving problems of the Earth surface deformation monitoring are addressed. The stages for processing of radar images are considered. The most labor-intensive stages in terms of both computation and computation time are highlighted. The experience of radar imagery usage for estimation of the Earth’s surface deformations in the mining areas at the major mining regions is represented. We present the concept of building an information system using radar images as a data for geodynamic monitoring. ALOS satellite imagery, SKY-Med and multispectral satellite images Landsat are used as a data. In created prototype of the system we use cloud services such as DaaS and SaaS, which allows to concentrate on the process of geoprocessing and analysis of their characteristics in order to obtain new data for the processes which occurs in the mountain range. The results of the radar data processing in system which uses SARscape, NEXT ESA SAR TOOLBOX, traditional methods of interferogram calculating and small baseline subset method (SBAS) are represented. Special attention is focused on a method of image post-processing and data analysis, which allows to clarify the characteristics of geodynamic condition of the surface. For this purpose, morphology and fractal image processing techniques are used. It is allowed to track changes in the surface state on the basis of such integral characteristics as the field of linear elements surface, the distribution of its density and fractal dimension of the image. Application of permanent reflectors allowed producing an integrated assessment of the speed of the surface displacement for a limited set of pixels with a strong sustainable reflected signal. Numerical experiments show the opportunity of satellite radar interferometry for solving complex problems associated with massif state estimation over a large area. The approach to the implementation of preprocessing technology with Hadoop, which enables the integration of different imaging systems of remote sensing, is suggested.
Ключевые слова: radar interferometry; Cluster systems; processing packages; Cloud Services; geographic information systems; радарная интерферометрия; облачный сервис; база данных; геоинформационная система; databases; кластерная система; пакет обработки; Big Data;
Издано: 2016
Физ. характеристика: с.141-151
Цитирование: 1. Maitre, H. Processing of Synthetic Aperture Radar Images. Hoboken, USA: John Willey& Sons Inc; 2008: 389. 2. Richards, M.A., Scheer, J. A., Holm, W.A. Principles of Modern Radar. Basic Principles. Edison, NJ: Scitech Publishing; 2010: 900. 3. Hanssen, R. N. Radar Interferometry - Data Interpretation and Error Analysis. New York, Boston, Dordrech, London, Moscow: Kluwer Academic Publishers; 2001: 308. 4. Massonnet, D., Souyris, J.-C. Imaging with Synthetic Aperture Radar. EFPL Press; 2008: 280. 5. Verba, V.S., Neronskiy, L.B., Osipov, I.G., Turok, V.E. Radiolokatsionnye sistemy zemleobzora kosmicheskogo bazirovaniya [Space-based radar systems for survey the Earth]. Moscow: Radiotekhnika; 2010: 680. (In Russ.) 6. Richards, J.A. Remote sensing with Imaging Radar. New York: Springer; 2009: 361. 7. Soergel, Uwe. Radar Remote sensing of Urban Areas. Springer Netherlands; 2010: 278. DOI: 10.1007/978-90-481-3751-0. 8. Kampes, Bert M. Radar Interferometry. Persistent Scatterer Techniquue. Springer Netherlands Springer; 2006: 211. DOI:10.1007/978-1-4020-4723-7. 9. Chen, C.H. Image processing for Remote Sensing. New York: CRC Press; 2007: 400. 10. Rahnama, M., Gloaguen, R. TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction. Remote sensing. 2014; 6(7):5938-5958. 11. Nest ESA SAR Toolbox. User Guide. European Space Agency, 2015: 121. 12. Warden Pete. BIG DATA Glossary. Cembridge; 2011: 45. 13. Holmes, A. Hadoop in Practice. Second edition. Island: Manning; 2014: 510. 14. Dragievi, S.B. Colloborative geographic information systems. Hershey,Pensilvania:Idea Group Publishing; 2006: 386. 15. Krishnakumar, K., Ganesh Karthikeyan, V. Analysis and Performance Evaluation of Large Data Sets Using Hadoop. International Journal of Research in Advent Technology. 2014; 2(5): 245-250.