Инд. авторы: | Борзов С.М., Мельников П.В., Пестунов И.А., Потатуркин О.И., Федотов А.М. |
Заглавие: | Комплексная обработка гиперспектральных изображений на основе спектральной и пространственной информации |
Библ. ссылка: | Борзов С.М., Мельников П.В., Пестунов И.А., Потатуркин О.И., Федотов А.М. Комплексная обработка гиперспектральных изображений на основе спектральной и пространственной информации // Вычислительные технологии. - 2016. - Т.21. - № 1. - С.25-39. - ISSN 1560-7534. - EISSN 2313-691X. |
Внешние системы: | РИНЦ: 25644523; |
Реферат: | rus: Рассмотрены методы тематической обработки гиперспектральных изображений, приведены результаты их экспериментального исследования. Предложена схема классификации гиперспектральных изображений, позволяющая учитывать как спектральные, так и пространственные характеристики. Для реализации этой схемы могут быть использованы традиционные для мультиспектральных изображений поэлементные классификаторы. eng: In this рареr wе аddrеss thе mеthоds оf thе hуреrsресtrаl imаgе сlаssifiсаtiоn. А nеw imаgе сlаssifiсаtiоn sсhеmе is рrороsеd. It иsеs bоth sресtrаl аnd sраtiаl infоrmаtiоn ехtrасtеd frоm аn imаgе. It аlsо аllоws tо сlаssifу hуреrsресtrаl imаgеs with thе hеlр оf trаditiоnаl аlgоrithms иsеd fоr mиltisресtrаl imаgеs еvеn fоr vеrу limitеd trаining dаtаsеts. Тhе sсhеmе соnsists оf thrее stаgеs: 1) rеdисtiоn оf fеаtиrе sрасе dimеnsiоnаlitу; 2) sиреrwisеd рiхеlwisе сlаssifiсаtiоn; 3) rеfining оf сlаssifiсаtiоn mар иsing sраtiаl infоrmаtiоn. Sеvеrаl аlgоrithms аrе соnsidеrеd fоr еасh stаgе. Рrinсiраl Соmроnеnt Аnаlуsis (РСА), Вlоск Рrinсiраl Соmроnеnt Аnаlуsis (ВРСА) аnd Мinimиm Nоisе Frасtiоn (МNF) аrе иsеd fоr first stаgе whilе Махimиm Liкеlihооd (МL) аnd Sирроrt Vесtоr Масhinе (SVМ) аrе еmрlоуеd fоr thе sесоnd stаgе. Маjоritу Filtеr (МF), Рrоbаbilitу-bаsеd Маjоritу Filtеr (РМF) аnd Мinimиm Sраnning Fоrеst (МSF) аrе tакеn fоr thе third stаgе. Тhе sсhеmе wаs tеstеd оn twо rеfеrеnсе hуреrsресtrаl imаgеs - Indiаn Рinеs (224 сhаnnеls) аnd Раviа Univеrsitу (103 сhаnnеls) - with diffеrеnt nиmbеr оf trаining sаmрlеs (100, 200, 400 аnd 800 sаmрlеs реr сlаss). Тhе rеsиlts shоw thаt nиmbеr оf fеаtиrеs саn bе rеdисеd bу оrdеr оf mаgnitиdе withоиt dеgrаdаtiоn оf сlаssifiсаtiоn qиаlitу. 20 МNF fеаtиrеs аrе sиffiсiеnt fоr Indiаn Рinеs imаgе аnd 15 ВРСА fеаtиrеs аrе sиffiсiеnt fоr Раviа Univеrsitу. If N/k < 15 (whеrе N is а nиmbеr оf trаining sаmрlеs реr сlаss аnd k is а nиmbеr оf fеаtиrеs) thе ассиrасу оf МL сlаssifiеr dесrеаsеs signifiсаntlу. Usе оf sраtiаl infоrmаtiоn саn inсrеаsе сlаssifiсаtiоn ассиrасу bу 6-8 %. |
Ключевые слова: | Principal Component analysis; extraction of informative features; hyperspectral image classification; спектральные и пространственные признаки; метод опорных векторов; метод главных компонент; выделение информативных признаков; классификация гиперспектральных изображений; spectral and spatial characteristics; support vector machine; |
Издано: | 2016 |
Физ. характеристика: | с.25-39 |
Цитирование: | 1. Bondur, V.G. Modern approaches for processing of big hyperspectral aerospace data. Issledovanie Zemli iz Kosmosa. 2014; 1:4-16. (In Russ.) 2. Raudis Sh.Yu. Review of the effect of a sample size on the classification of the quality. Statistical problems of control. 1984; (66):9-42. (In Russ.) 3. Richards, J.A. Remote Sensing Digital Image Analysis. Berlin: Springer-Verlag; 1999: 240. 4. Plaza, А., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C., Trianni, G. Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment. 2009; (113):S110-S122. 5. Ablin, R., Sulochana, C.H. A Survey of Hyperspectral Image Classification in Remote Sensing. International Journal of Advanced Research in Computer and Communication Engineering. 2013; 2(8):2986-3003. 6. Kuo, B.C., Landgrebe, D.A. A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction. IEEE Transactions on Geoscience and Remote Sensing. 2002; 40 (11):2486-2494. 7. Martinez-Uso, A., Pla, F., Sotoca, J.M., García-Sevilla, P. Clustering based band selection for hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing. 2007; 45 (12):4158-4171. 8. Lavanya, A., Sanjeevi, S. An improved band selection technique for hyperspectral data using factor analysis. Journal of the Indian Society of Remote Sensing. 2013; 41 (2):199-211. 9. Ratle, F., Weston, J. Semisupervised Neural Networks for Efficient Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing. 2010; 48 (5): 2271-2282. 10. Fodor, I. A Survey Of Dimension Reduction Techniques. Technical Report UCRL-ID-148494. Oakland: University of California; 2002: 26. 11. Bruce, L.M., Koger, C.H., Jiang, L. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Transactions on Geoscience and Remote Sensing. 2002; 40 (10):2331-2338. 12. Smirnov, S.I., Mikhailov, V.V., Ostrikov V.N. Application of randomized principal component analysis for compression of hyperspectral data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa. 2014; 11 (2):9-17. (In Russ.) 13. Imani, M., Ghassemian, H. Band Clustering-Based Feature Extraction for Classification of Hyperspectral Images Using Limited Training Samples. IEEE Geoscience and Remote Sensing Letters. 2014; 11 (8):1325-1329. 14. Xiuping, J. Simplified maximum likelihood classification for hyperspectral data in cluster space. IEEE Geoscience and Remote Sensing Symposium. 2002; (5):2578-2580. 15. Gualtieri, J.A., Cromp, R.F. Support Vector Machines for hyperspectral remote sensing classification. Proceedings 27th AIPR Workshop: Advances in Computer-Assisted Recognition. 1999:221-232. 16. Meer, F. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation. 2006; 8(1):3-17. 17. Goel, P.K., Prasher, S.O., Patel, R.M., Landry, J.A., Bonnell, R.B., Viau, A.A. Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture. 2003; (39):67-93. 18. Kuznetsov, A.V., Myasnikov, V.V. A comparison of algorithms for supervised classification using hyperspectral data. Computer Optics. 2014; 38(3):494-502. (In Russ.) 19. Shafri, H. The Performance of Maximum Likelihood, Spectral Angle Mapper, Neural Network and Decision Tree Classifiers in Hyperspectral Image Analysis. Journal of Computer Science. 2007; 3(6):419-423. 20. Borzov, S.M., Potaturkin, O.I. Vegetable cover type classification using hyperspectral remote sensing. Novosibirsk State University Journal of Information Technologies. 2014; 12(4):13-22. (In Russ.) 21. Dey, V., Zhang, Y., Zhong, M. A review on image segmentation techniques with remote sensing perspective. ISPRS TC VII Symposium - 100 Years ISPRS. Vienna, Austria, July 5-7 2010. IAPRS. 2010: XXXVIII(pt 7A):31-42. 22. Zimichev, E.A., Kazanskiy, N.L., Serafimovich, P.G. Spectral-spatial classification with k-means++ particional clustering. Computer Optics. 2014; 38 (2):281-286. 23. Fauvel, M. Spectral and spatial methods for the classification of urban remote sensing data. PhD. Thesis. Grenoble Institute of Technology; 2007: 188. 24. Bernard, K., Tarabalka, K., Angulo, J., Chanussot, J., Benediktsson, J.A. Spectral-Spatial Classification of Hyperspectral Data Based on a Stochastic Minimum Spanning Forest Approach. IEEE Transactions on Image Processing. 2012; 21(4):2008-2021. 25. Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine. 1901; 2(11):559-572. 26. Pestunov, I.A., Melnikov, P.V. Block principal component analysis for extraction of informative features for classification of hyperspectral images. Journal of Siberian Federal University: Engineering & Technologies. 2015; 8(6):715-725. (In Russ.) 27. Green, A.A., Berman, M., Switzer, P., Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing. 1988; 26(1):65-74. 28. Vermillion, S.C., Sader, S.A. Use of the Minimum Noise Fraction (MNF) Transform to Analyze Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Data of Northern Forest Types. AVIRIS Workshop. JPL Publication. 1999. Available at: http://aviris.jpl.nasa.gov/proceedings/workshops/99_docs/62.pdf (accessed at 23.11.2015). 29. Borzov, S.M., Potaturkin, A.O., Potaturkin, O.I., Fedotov, A.M. A research of classification efficiency for hyperspectral satellite images of nature and anthropogenic territory. Optoelectronics, Instrumentation and Data Processing. 2016; 1(52):1-6. 30. Cristianini, N. An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge University Press; 2000: 189. 31. Chang, C.-C., Lin, C.-J. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology. 2011; 2(27):1-27. 32. Hader, D.P. Image Analysis: Methods and Applications. London: CRC Press; 2000: 480. 33. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. Introduction to Algorithms (2nd ed.). Cambridge: The MIT Press; 2001: 1184. 34. Hyperspectral Remote Sensing Scenes. Available at: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (accessed at 22.06.2014). |