Инд. авторы: Sklyarov E.V., Kovach V.P., Kotov A.B., Kuzmichev A.B., Lavrenchuk A.V., Perelyaev V.I., Shchipansky A.A.
Заглавие: Boninites and ophiolites: Problems of their relations and petrogenesis of boninites
Библ. ссылка: Sklyarov E.V., Kovach V.P., Kotov A.B., Kuzmichev A.B., Lavrenchuk A.V., Perelyaev V.I., Shchipansky A.A. Boninites and ophiolites: Problems of their relations and petrogenesis of boninites // Russian Geology and Geophysics. - 2016. - Vol.57. - Iss. 1. - P.127-140. - ISSN 1068-7971. - EISSN 1878-030X.
Внешние системы: DOI: 10.1016/j.rgg.2016.01.009; РИНЦ: 26856931; SCOPUS: 2-s2.0-84958648558; WoS: 000369723900010;
Реферат: eng: There are four main types of boninites in ophiolite suites, which either spatially coexist with ophiolites though belong to other tectonic units (1), or are present as later constituents of ophiolite sequences (crosscutting dikes or lavas on top) (2), or build ophiolite sequences together with island-arc tholeiites and basaltic andesites, followed by younger volcanics of MORB or BABB affinites (3), or occupy the whole mafic portion of ophiolite sequences, together with island-arc tholeiites and basaltic andesites (4). The latter type, considered in more detail for the case of ophiolites from the southeastern Sayan Mountains (Siberia, Russia), presents an example of inconsistency between the model of ophiolite formation in mid-ocean ridge settings and subduction-related island-arc fingerprints in ophiolitic mafic rocks. The patterns of boninites record several evolution models of oceanic systems, with melting and intrusion of boninites in forearc, arc, and back-arc settings. The existing models are controversial, possibly, because there is no single mechanism to account for all types of boninites. (C) 2016, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
Ключевые слова: HIGH-MG; ISLAND-ARC; OCEANIC-CRUST; TROODOS OPHIOLITE; JOSEPHINE OPHIOLITE; FORE-ARC; VOLCANIC-ROCKS; BETTS COVE OPHIOLITE; ABITIBI GREENSTONE-BELT; southeastern Sayan; suprasubduction magmatism; subduction zone; ophiolites; SUBDUCTION INITIATION;
Издано: 2016
Физ. характеристика: с.127-140
Цитирование: 1. Angerer T., Kerrich R., Haggemann S.G. Geochemistry of a komattitic, boninitic, and tholeiitic basalt association in the Mesoarchean Koolyanobbing greenstone belt, Southern Cross Domain, Yilgarn craton: Implications for mantle source and geodynamic settings of banded iron formation. Precambrian Res. 2013, 224:110-128. 2. Anisimova I.V., Levitsky I.V., Salnikova E.B., Kotov A.B., Levitsky V.I., Reznitsky L.Z., Efremov S.V., Velikoslavinsky S.D., Barash I.G., Fedoseenko A.M. The age of basement under the Gargan block (East Sayan): constraints from U-Pb dating. Isotope Systems and Time of Geological Processes [in Russian]. Proc. IV Russian Conf. on Isotope Geochronology, 2-June 2009, St. Petersburg, Book 1 2009, 34-35. IP Katalkina, St. Petersburg. 3. Bédard J.H. Petrogenesis of boninites from the Betts Cove Ophiolite, Newfounland, Canada: Identification of subducted source components. J. Petrol. 1999, 40:1853-1889. 4. Bédard J.H., Lanzière K., Tremblay K., Sangster A. Evidence for forearc sea-floor spreading from the Betts Cove ophiolite, Newfoundland: oceanic crust of boninitic affinity. Tectonophysics 1998, 284:233-245. 5. Bédard J.H., Pagé P., Bécu V., Schroetter J.-M., Tremblay A. Overview of the geology and Cr-PGE potential of the Southern Québec Ophiolite Belt. Mineral Deposits of Canada: a Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods 2007, 5:433-448. Geological Association of Canada, Mineral Deposits Division, Special Publication. W.D. Goodfellow (Ed.). 6. Petrographic Code of Russia. Igneous, Metamorphic, Metasomatic, and Impact Rocks [in Russian] 2009, VSEGEI, St. Petersburg. O.A. Bogatikov, O.V. Petrov, A.F. Morozov (Eds.). 7. Boily M., Dion C. Geochemistry of boninite-type volcanic rocks in the Frotet-Evand greenstone belt, Opatica subprovince, Quebec: implications for the evolution of Archaean greenstone belts. Precambrian Res. 2002, 115:349-371. 8. Bortollotti V., Marroni M., Pandolfi L., Principi G., Saccani E. Interaction between mid-ocean ridge and subduction magmatism in Albanian ophiolites. J. Geol. 2002, 110:561-576. 9. Cameron W.E. Petrology and origin of primitive lavas from the Troodos ophiolite. Cyprus. Contrib. Mineral. Petrol. 1985, 89:239-255. 10. Cameron W.E., Nisbet E.G., Dietrich V.J. Boninites, komatiites and ophiolitic basalts. Nature 1979, 280:550-553. 11. Cameron W.E., McCulloch M.T., Walker D.A. Boninite petrogenesis: Chemical and Nd-Sr isotopic constraints. Earth Planet. Sci. Lett. 1983, 65:75-89. 12. Crawford A.J., Cameron W.E. Petrology and geochemistry of Cambrian boninites and low-Ti andesites fron Heathcote. Victoria. Contrib. Mineral. Petrol. 1985, 91:93-104. 13. Crawford A.J., Fallon T.J., Green D.H. Classification, petrogenesis and tectonic setting of boninites. Boninites and Related Rocks 1989, 1-49. Unwin & Hyman, London. A.J. Crawford (Ed.). 14. Dann J.C. Early Proterozoic ophiolite, central Arizona. Geology 1991, 19:590-593. 15. Dobretsov N.L. Fold-thrust tectonics in the East Sayan area. Geotektonika 1985, 1:39-50. 16. Geology and Metamorphism of the East Sayan Area [in Russian] 1988, Nauka, Novosibirsk. N.L. Dobretsov, V.I. Ignatovich (Eds.). 17. Geology and Metallogeny of the East Sayan Area [in Russian] 1989, Nauka, Novosibirsk. N.L. Dobretsov, V.I. Ignatovich (Eds.). 18. Dobretsov N.L., Kepezhinskas V.V. Three types of ultramafic magmas: message from Precambrian mantle. Mantle Xenoliths and Ultramafic Magmas [in Russian] 1983, 107-113. Nauka, Novosibirsk. 19. Dobretsov N.L., Konnikov E.G., Medvedev V.N., Sklyarov E.V. Ophiolites and olistostromes in the East Sayan area. Riphean-Lower Paleozoic Ophiolites of Northern Eurasia [in Russian] 1985, 34-59. Nauka, Novosibirsk. 20. Dobretsov N.L., Konnikov E.G., Sklyarov E.V., Medvedev V.N. Marianite-boninite series and evolution of ophiolite magmatism of East Sayan. Geologiya i Geofizika (Soviet Geology and Geophysics) 1986, 37(12):29-35. (27-33). 21. Dobretsov N.L., Sharaskin A.Y., Sobolev N.V. Marianites: the clinoenstatite bearing pillow-lavas associated with ophiolite assemblage of Mariana Trench. Ophiolites. Proc. Int. Ophiolite Symposium. Nicosia, Cyprus 1980, 473-479. 22. Falloon T.J., Danyushevsky L.V. Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: Implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J. Petrol. 2000, 41:257-283. 23. Fan J., Kerrich R. Geochemical characteristics of aluminium depleted and undepleted komatiites and HREE-enriched low-Ti tholeiites, western Abitibi greenstone belt: a heterogeneous mantle plume-convergent margin environment. Geochim. Cosmochim. Acta 1997, 61:4723-4724. 24. Flower M.F.J., Levine H.M. Petrogenesis of a tholeiite-boninite sequence from Ayios Mamas, Troodos ophiolite: evidence for splitting of a volcanic arc?. Contrib. Mineral. Petrol. 1987, 97:509-524. 25. Furnes H., de Wit M., Dilek Y. Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geoscience Frontiers 2014, 5:571-603. 26. Godard M., Dautria J.-M., Perrin M. Geochemical variability of the Oman ophiolite lavas: Relationship with special distribution and paleomagnetic direction. Geochem. Geophys. Geosyst. 2003, 4. 10.1029/2002GC000452. 27. Goldstein S.J., Jacobsen S.B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett. 1988, 87:249-265. 28. Harper G.D. The Josephine Ophiolite, northwestern California. Geol. Soc. Am. Bull. 1984, 95:1009-1026. 29. Harper G.D. Tectonic implications of boninite, arc tholeiite, and MORB magma types in the Josephine Ophiolite, California-Oregon. Geological Society, London, Spec. Publ. 2003, 218:207-230. 30. Herzberg C., Condie K., Korenaga J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 2010, 292:79-88. 31. Ishikawa T., Nagaishi K., Umino S. Boninitic volcanism in the Oman ophiolite: Implications for thermal condition during transition from spreading ridge to arc. Geology 2002, 30:899-902. 32. Jacobsen S.B., Wasserburg G.J. Sm-Nd evolution of chondrites and achondrites. Earth Planet. Sci. Lett. 1984, 67:137-150. 33. Kerrich R., Wyman D., Bleeker W. Boninite series: low Ti-tholeiite associations from the 2.7 Ga Abitibi greenstone belt. Earth Planet. Sci. Lett. 1998, 164:303-316. 34. Khain E.V., Bibikova E.V., Kröner A., Zhuravlev D.Z., Sklyarov E.V., Fedotova A.A., Kravchenko-Berezhnoy I.R. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet. Sci. Lett. 2002, 1999:311-325. 35. Kotov A.B., Kovach V.P., Salnikova E.B., Glebovitsky V.A., Iakovleva S.Z., Berezhnaia N.G., Myskova T.A. History of crust growth in the central Aldan granulite-gneis area: U-Pb and Sm-Nd data on granitoids. Petrology 1995, 3(1):99-110. 36. Kurenkov S.A., Didenko A.N., Simonov V.A. Geodynamics of Paleospreading [in Russian] 2002, GEOS, Moscow. 37. Kuzmichev A.B. Tectonic History of the Tuva-Mongolia Terrane: Early Baikalian, Late Baikalian, and Early Caledonain Orogenies [in Russian] 2004, Probel-2000, Moscow. 38. Le Bas M.J. IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 2000, 41:1467-1470. 39. Le Maitre R.W., Bateman P., Dudek A., Keller J., Lameyre J., Le Bas M.J., Sabine P.A., Schmid R., Sorensen H., Streckeisen A., Wooley A.R., Zanettin B. Classification of Igneous Rocks and Glossary of Terms: Recommendation of the International Union of Geological Sciences Subcomission on the Systematics of Igneous Rocks 1989, Blackwell Scientific, Oxford. 40. Macpherson C.G., Hall R. Tectonic setting of Eocene boninite magmatism in the Izu-Bonin-Mariana forearc. Earth Planet. Sci. Lett. 2001, 186:215-230. 41. Meffre S. Geochemical evolution and tectonic significance of boninites and tholeiites from the Koh ophiolite, New Caledonia. Tectonics 1996, 15:67-83. 42. Middlemost E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37:215-224. 43. Miyashiro A. The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet. Sci. Lett. 1973, 19:218-224. 44. Niu Y., O'Hara M.J., Pearce J.A. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: A petrological perspective. J. Petrol. 2003, 44:851-866. 45. Pagé P., Bédard J.H., Tremblay A. Geochemical variations in a depleted forearc mantle: The Ordovician Thetford Mines Ophiolite. Lithos 2009, 113:21-47. 46. Pearce J.A. Trace element characteristics of lavas from distinctive plate boundaries. Andesites 1982, 525-548. John Wiley, New York. J. Thorpe (Ed.). 47. Pearce J.A. Subduction zone ophiolites. Ophiolite Concept and the Evolution of Geological Thought 2003, 373:269-294. GSA, Spec. Pap. Y. Dylek, S. Newcomb (Eds.). 48. Pearce J.A., Lippard S.J., Roberts S. Characteristics and tectonic significance of suprasubduction zone ophiolites. Geol. Soc. London Spec. Publ. 1984, 16:74-94. 49. Pearce J.A., Robinson P.T. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res. 2010, 18:60-81. 50. Pe-Piper G., Tsikouras B., Hatzipanagiotou K. Evolution of boninites and island-arc tholeiites in the Pindos Ophiolite. Greece. Geol. Mag. 2004, 141:455-469. 51. Phillips-Lander C.M., Dilek Y. Structural architecture of the sheeted dike complex and extensional tectonics of the Jurassic Mirdita ophiolite, Albania. Lithos 2009, 108:192-206. 52. Polat A., Hofmann A.W., Rosing M.T. Boninite-like volcanic rocks in the 3.7-3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem. Geol. 2002, 184:231-254. 53. Portniagin M.V., Makagian R., Shminke Kh.-U. Geochemical diversity of boninite magmas from magmatic inclusions in highly magnesian olivine from lavas in South Cyprus. Petrology 1996, 4(3):250-265. 54. Saunders A.D., Norry M.J., Tarney J. Origin of MORB and chemically depleted mantle reservoirs: trace element constraints. J. Petrol. (Special Lithosphere Issue) 1988, 415-445. 55. Shchipansky A.A. Subduction and Mantle Plumes in Geodynamics of Archean Greenstone Belts [in Russian] 2008, LIK, Moscow. 56. Shchipansky A.A., Samsonov A.V., Bogina M.M., Slabunov A.V., Bibikova E.V. High-Mg, low-Ti quartz amphibolites from the Hizovaar greenstone belt in Northern Karelia: Archean metamorphic analogs of boninites?. Dokl. RAN 1999, 365(6):817-820. 57. Shchipansky A.A., Samsonov A.V., Bibikova E.V., Babarina I.I., Krylov K.A., Konilov A.N., Slabunov A.I., Bogina M.M. 2.8 Ga boninite-hosting partial suprasubduction zone ophiolite sequences from the North Karelian greenstone belt, NE Baltic Shield, Russia. Precambrian Ophiolites and Related Rocks 2004, 424-486. Elsevier, Amsterdam. T. Kusky (Ed.). 58. Shervais J.W. Birth, death, and ressurection: The life cycle of suprasubduction zone ophiolites. Geoch. Geophys. Geosystems 2001, 2. pap. no. 2000GS000080. 59. Simonov V.A., Dobretsov N.L., Buslov M.M. Boninite series in structures of the Paleoasian ocean. Geologiya i Geofizika (Russian Geology and Geophysics) 1994, 45(7/8):200-216. (187-189). 60. Sklyarov E.V., Dobretsov N.L. Metamorphism of ancient ophiolites of East and West Sayan. Geologiya i Geofizika (Soviet Geology and Geophysics) 1987, 38(2):3-14. (1-11). 61. Sklyarov E.V., Simonov V.A., Buslov M.M. Ophiolites of the Southern Siberia and Northern Mongolia. Reconstruction of the Paleo-Asian ocean 1994, 85-98. VCP International Science Publishers, Netherlands. 62. Sobolev A.V., Danyushevsky L.V. Petrology and geochemistry of boninites from the north termination of the Tonga trench: constraints on the generation conditions of primary high-Ca boninite magmas. J. Petrol. 1994, 35:1183-1211. 63. Stern R.J. Subduction initiation: spontaneous and induced. Earth Planet. Sci. Lett. 2004, 226:275-292. 64. Stern R.J., Bloomer S.H. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California. Geol. Soc. Am. Bull. 1992, 104:1621-1636. 65. Sun S.-S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Publ. 1989, 42:313-345. Blackwell Scientific, London. A.D. Saunders, M.J. Norry (Eds.). 66. Taylor R.N., Nesbitt R.W. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth Planet. Sci. Lett. 1998, 164:79-98. 67. Turner S., Hawkesworth C. Constraints on flux rates and mantle dynamics beneath island arcs from Tonga-Kermadec lava geochemistry. Nature 1997, 389:568-573. 68. Wallin T.E., Metcalf R.V. Supra-subduction zone ophiolite formed in an extensional forearc: Trinity Terrane, Klamath Mountains, California. J. Geol. 1998, 106:591-608. 69. Xia X., Song S., Niu Y. Tholeiite-boninite terrane in the North Qilian suture zone: Implications for subduction initiation and back-arc basin development. Chem. Geol. 2012, 328:259-277. 70. Zonenshain L.P., Kuzmin M.I. Khan-Taishir ophiolites in Western Mongolia and problems of ophiolite formation. Geotektonika 1978, 1:19-42. 71. Zonenshain L.P., Kuzmin M.I. The Khan-Taishir ophiolitic complex, origin and comparison with other ophiolitic complexes. Contrib. Mineral. Petrol. 1978, 67:95-109.