Инд. авторы: Bataleva Y.V., Palyanov Y.N., Borzdov Y.M., Bayukov O.A., Sobolev N.V.
Заглавие: Conditions for diamond and graphite formation from iron carbide at the P-T parameters of lithospheric mantle
Библ. ссылка: Bataleva Y.V., Palyanov Y.N., Borzdov Y.M., Bayukov O.A., Sobolev N.V. Conditions for diamond and graphite formation from iron carbide at the P-T parameters of lithospheric mantle // Russian Geology and Geophysics. - 2016. - Vol.57. - Iss. 1. - P.176-189. - ISSN 1068-7971. - EISSN 1878-030X.
Внешние системы: DOI: 10.1016/j.rgg.2016.01.012; РИНЦ: 26856026; SCOPUS: 2-s2.0-84958609299; WoS: 000369723900013;
Реферат: eng: To estimate conditions for the stability of iron carbide under oxidation conditions and to assess the possibility of formation of elemental carbon by interaction between iron carbide and oxides, experimental modeling of redox interaction in the systems Fe3C-Fe2O3 and Fe3C-Fe2O3-MgO-SiO2 was carried out on a split-sphere high-pressure multianvil apparatus at 6.3 GPa and 900-1600 degrees C for 18-20 h. During carbide-oxide interaction in the system Fe3C-Fe2O3, graphite crystallizes in assemblage with Fe3+-containing wusite. Graphite forms from carbide carbon mainly by cohenite oxidation: Fe3C + 3Fe(2)O(3) -> 9FeO + C-0 and FeO + Fe3C -> (Fe2+, Fe3+)O + C-0. At above-solidus temperatures (>= 1400 degrees C), when metal-carbon melt is oxidized by wusite, graphite and diamond crystallize by the redox mechanism and form the Fe3+-containing wstite + graphite/diamond assemblage. Interaction in the system Fe3C-Fe2O3-MgO-SiO2 results in the formation of Fe3+-containing mannesiowusite-olivine-graphite assemblage. At >= 1500 degrees C, two melts with contrasting f(O2) values are generated: metal-carbon and silicate-oxide; their redox interaction leads to graphite crystallization and diamond growth. Under oxidation conditions, iron carbide is unstable in the presence of iron, silicon, and magnesium oxides, even at low temperatures. Iron carbide-oxide interaction at the mantle temperatures and pressures leads to the formation of elemental carbon; graphite is produced from carbide carbon mainly by redox reactions of cohenite (or metal-carbon melt) with Fe2O3 and FeO as well as by interaction between metal-carbon and silicate-oxide melts. The results obtained suggest that cohenite can be a potential source of carbon during graphite (diamond) formation in the lithospheric mantle and the interaction of iron carbide with iron, silicon, and magnesium oxides, during which carbon is extracted can be regarded as a process of the global carbon cycle. (C) 2016, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
Ключевые слова: MOSSBAUER; FERRIC IRON; REDOX BUDGET; SUBDUCTION ZONES; KOKCHETAV MASSIF; HIGH-PRESSURE; MINERAL INCLUSIONS; EARTHS MANTLE; DEEP CARBON-CYCLE; lithospheric mantle; redox interaction; subduction; olivine; oxides; diamond; graphite; wusite; iron carbide; high-pressure experiment; METAL;
Издано: 2016
Физ. характеристика: с.176-189
Цитирование: 1. Alt J.C., Shanks W.C., Jackson M.C. Cycling of sulfur in subduction zones-the geochemistry of sulfur in the Mariana-Island Arc and Back-Arc Trough. Earth Planet. Sci. Lett. 1993, 119:477-494. 2. Ballhaus C. Is the upper mantle metal-saturated?. Earth Planet Sci. Lett. 1995, 132:75-86. 3. Bataleva Yu.V., Palyanov Yu.N., Sokol A.G., Borzdov Yu.M., Palyanova G.A. Conditions for the origin of oxidized carbonate-silicate melts: implications for mantle metasomatism and diamond formation. Lithos 2012, 128-131:113-125. 4. Bataleva Yu.V., Palyanov Yu.N., Sokol A.G., Borzdov Yu.M., Bayukov O.A. The role of rocks saturated with metallic iron in the formation of ferric carbonate-silicate melts: experimental modeling under PT-conditions of lithospheric mantle. Russian Geology and Geophysics (Geologiya i Geofizika) 2015, 56(1-2):153-164. (188-203). 5. Bataleva Yu.V., Palyanov Yu.N., Borzdov Yu.M., Bayukov O.A., Sobolev N.V. Interaction of iron carbide and sulfur under P-conditions of the lithospheric mantle. Dokl. Earth Sci. 2015, 463(1):707-711. 6. Bulanova G.P. The formation of diamond. J. Geochem. Explor. 1995, 53(1-3):1-23. 7. Bulanova G.P., Walter M.J., Smith C.B., Kohn S.C., Armstrong L.S., Blundy J., Gobbo L. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib. Mineral. Petrol. 2010, 159(4):489-510. 8. Dasgupta R., Hirschmann M.M. The deep carbon cycle and melting in Earth's interior. Earth Planet. Sci. Lett. 2010, 298:1-13. 9. Dasgupta R., Buono A., Whelan G., Walker D. High-pressure melting relations in Fe-C-systems: implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochim. Cosmochim. Acta 2009, 73:6678-6691. 10. Dobretsov N.L., Shatskiy A.F. Deep carbon cycle and geodynamics: the role of the core and carbonatite melts in the lower mantle. Russian Geology and Geophysics (Geologiya i Geofizika) 2012, 53(11):1117-1132. (1455-1475). 11. Dobretsov N.L., Shatsky V.S. Exhumation of the high-pressure rocks of the Kokchetav massif: facts and models. Lithos 2004, 78:307-318. 12. Evans K.A. The redox budget of subduction zones. Earth Sci. Rev. 2012, 113:11-32. 13. Evans K.A., Powell P. The effect of subduction on the sulphur, carbon and redox budget of lithospheric mantle. J. Metamorph. Geol. 2015, 33(6):649-670. 14. Finger L.W. The uncertainty in the calculated ferric iron content of a microprobe analysis. Carnegie Inst. Washington, Year Book 71 1972, 600-603. 15. Frost D.J., McCammon C.A. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 2008, 36:389-420. 16. Frost D.J., Liebske C., Langenhorst F., McCammon C.A., Trønnes R.G., Rubie D.C. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 2004, 428:409-412. 17. Green D.H., Eggins S.M., Yaxley G. Mantle dynamics-the other carbon-cycle. Nature 1993, 365:210-211. 18. Greenwood N.N., Howe A.T. Mössbauer studies of Fe1-xO. Part I. The defect structure of quenched samples 1972, 110-116. J. Chem. Soc., Dalton Trans. 19. Haavik C., Stølen S., Fjellvåg H., Hanfland M., Häusermann D. Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-system at high pressure. Am. Mineral. 2000, 85:514-523. 20. Harte B., Richardson S. Mineral inclusions in diamonds track the evolution of a Mesozoic subducted slab beneath West Gondwanaland. Gondwana Res. 2012, 21:236-245. 21. Hirschmann M.M., Dasgupta R. The H/C ratios of Earth's near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 2009, 262:4-16. 22. Horita J., Polyakov V.B. Carbon-bearing iron phases and the carbon isotope composition of the deep Earth. PNAS 2015, 112(1):31-36. 23. Jacob D.E., Kronz A., Viljoen K.S. Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contrib. Mineral. Petrol. 2004, 146(5):566-576. 24. Kaminsky F. Mineralogy of the lower mantle: A review of 'super-deep' mineral inclusions in diamond. Earth Sci. Rev. 2012, 110:127-147. 25. Kaminsky F.V., Wirth R. Iron carbide inclusions in lower-mantle diamond from Juina. Brazil. Can. Mineral. 2011, 49:555-572. 26. Kennedy C.S., Kennedy G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 81(14):2467-2470. 27. Kerrick D.M., Connolly J.A.D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature 2001, 411:293-296. 28. Lecuyer C., Ricard Y. Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth's mantle and atmosphere. Earth Planet. Sci. Lett. 1999, 165:197-211. 29. Lord O.T., Walter M.J., Dasgupta R., Walker D., Clark S.M. Melting in the Fe-system to 70 GPa. Earth Planet. Sci. Lett. 2009, 284:157-167. 30. Luth R.W. Carbon and carbonates in the mantle. Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd 1999, 6:297-316. Geochem. Soc. Spec. Publ. Y. Fei, C.M. Bertka, B.O. Mysen (Eds.). 31. Luth R.W. Volatiles in Earth's mantle. Reference Module in Earth Systems and Environmental Sciences 2014, 3:355-391. Treatise on Geochemistry. second ed. 32. Manning P.G., Jones W., Birchall T. Mossbauer spectral studies of iron-enriched sediments from Hamilton Harbor, Ontario. Can. Mineral. 1980, 18:29l-299. 33. Marty B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 2012, 313-314:56-66. 34. McCammon C.A., Price D.C. Mossbauer spectra of FexO (> 0.95). Phys. Chem. Mineral. 1985, 11:250-254. 35. Palyanov Yu.N., Sokol A.G. The effect of composition of mantle fluids/melts on diamond formation processes. Lithos 2009, 112S:690-700. 36. Pal'yanov Yu.N., Sokol A.G., Borzdov Yu.M., Khokhryakov A.F. Fluid-bearing alkaline-carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study. Lithos 2002, 60:145-159. 37. Palyanov Yu.N., Borzdov Yu.M., Khokhryakov A.F., Kupriyanov I.N., Sokol A.G. Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 2010, 10:3169-3175. 38. Palyanov Y.N., Bataleva Y.V., Sokol A.G., Borzdov Y.M., Kupriyanov I.N., Reutsky V.N., Sobolev N.V. Mantle-slab interaction and redox mechanism of diamond formation. PNAS 2013, 110(51):20,408-20,413. 39. Palyanov Yu.N., Sokol A.G., Khokhryakov A.F., Kruk A.N. Conditions of diamond crystallization in kimberlite melt: experimental data. Russian Geology and Geophysics (Geologiya i Geofizika) 2015, 56(1-2):196-210. (254-272). 40. Plank T., Langmuir C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145:325-394. 41. Rohrbach A., Schmidt M.W. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 2011, 472:209-212. 42. Rohrbach A., Ballhaus C., Golla Schindler U., Ulmer P., Kamenetsky V.S., Kuzmin D.V. Metal saturation in the upper mantle. Nature 2007, 449:456-458. 43. Rohrbach A., Ballhaus C., Ulmer P., Golla Schindler U., Schönbohm D. Experimental evidence for a reduced metal-saturated upper mantle. J. Petrol. 2011, 52:717-731. 44. Rohrbach A., Ghosh S., Schmidt M.W., Wijbrans C.H., Klemme S. The stability of Fe-Ni carbides in the Earth's mantle: Evidence for a low Fe-Ni-melt fraction in the deep mantle. Earth Planet. Sci. Lett. 2014, 388:211-221. 45. Ryabchikov I.D. Mechanisms of diamond formation: reduction of carbonates or partial oxidation of hydrocarbons. Dokl. Earth Sci. 2009, 429(8):1346-1349. 46. Ryabchikov I.D., Kaminsky F.V. Physicochemical parameters of the material of mantle plumes: Evidence from the thermodynamic analysis of mineral inclusions in sublithospheric diamond. Geochem. Int. 2014, 52(11):903-911. 47. Schertl H.-P., Sobolev N.V. The Kokchetav Massif, Kazakhstan: "Type locality" of diamond-bearing UHP metamorphic rocks. J. Asian Earth Sci. 2013, 63:5-38. 48. Shen P., Bassett W.A., Liu L.-G. Experimental determination of the effects of pressure and temperature on the stoichiometry and phase relations of wustite. Geochim. Cosmochim. Acta 1983, 47:773-778. 49. Shirey S.B., Cartigny P., Frost D.G., Keshav S., Nestola F., Nimis P., Pearson D.G., Sobolev N.V., Walter M.J. Diamonds and the Geology of Mantle Carbon. Rev. Mineral. Geochem. 2013, 75:355-421. 50. Smith E.M., Kopylova M.G. Implications of metallic iron for diamonds and nitrogen in the sublithospheric mantle. Can. J. Earth Sci. 2014, 51(5):510-516. 51. Sobolev N.V., Efimova E.S., Pospelova L.N. Native iron in diamonds of Yakutiya and its paragenesis. Geologiya i Geofizika (Soviet Geology and Geophysics) 1981, 12:25-28. (18-21). 52. Sobolev V.N., McCammon C.A., Taylor L.A., Snyder G.A., Sobolev N.V. Precise Mössbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis. Am. Mineral. 1999, 84:78-85. 53. Stachel T., Harris J.W., Brey G.P. Rare and unusual mineral inclusions in diamonds from Mwadui. Tanzania. Contrib. Mineral. Petrol. 1998, 132:34-47. 54. Walter M.J., Kohn S.C., Araujo D., Bulanova G.P., Smith C.B., Gaillou E., Wang J., Steele A., Shirey S.B. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 2011, 333(6052):54-57. 55. Zedgenizov D.A., Yefimova E.S., Logvinova A.M., Shatsky V.S., Sobolev N.V. Ferropericlase inclusions in a diamond microcrystal from the Udachnaya kimberlite pipe. Yakutia. Dokl. Earth Sci. 2001, 377A(3):319-321.