Цитирование: | 1. Alt J.C., Shanks W.C., Jackson M.C. Cycling of sulfur in subduction zones-the geochemistry of sulfur in the Mariana-Island Arc and Back-Arc Trough. Earth Planet. Sci. Lett. 1993, 119:477-494.
2. Ballhaus C. Is the upper mantle metal-saturated?. Earth Planet Sci. Lett. 1995, 132:75-86.
3. Bataleva Yu.V., Palyanov Yu.N., Sokol A.G., Borzdov Yu.M., Palyanova G.A. Conditions for the origin of oxidized carbonate-silicate melts: implications for mantle metasomatism and diamond formation. Lithos 2012, 128-131:113-125.
4. Bataleva Yu.V., Palyanov Yu.N., Sokol A.G., Borzdov Yu.M., Bayukov O.A. The role of rocks saturated with metallic iron in the formation of ferric carbonate-silicate melts: experimental modeling under PT-conditions of lithospheric mantle. Russian Geology and Geophysics (Geologiya i Geofizika) 2015, 56(1-2):153-164. (188-203).
5. Bataleva Yu.V., Palyanov Yu.N., Borzdov Yu.M., Bayukov O.A., Sobolev N.V. Interaction of iron carbide and sulfur under P-conditions of the lithospheric mantle. Dokl. Earth Sci. 2015, 463(1):707-711.
6. Bulanova G.P. The formation of diamond. J. Geochem. Explor. 1995, 53(1-3):1-23.
7. Bulanova G.P., Walter M.J., Smith C.B., Kohn S.C., Armstrong L.S., Blundy J., Gobbo L. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib. Mineral. Petrol. 2010, 159(4):489-510.
8. Dasgupta R., Hirschmann M.M. The deep carbon cycle and melting in Earth's interior. Earth Planet. Sci. Lett. 2010, 298:1-13.
9. Dasgupta R., Buono A., Whelan G., Walker D. High-pressure melting relations in Fe-C-systems: implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochim. Cosmochim. Acta 2009, 73:6678-6691.
10. Dobretsov N.L., Shatskiy A.F. Deep carbon cycle and geodynamics: the role of the core and carbonatite melts in the lower mantle. Russian Geology and Geophysics (Geologiya i Geofizika) 2012, 53(11):1117-1132. (1455-1475).
11. Dobretsov N.L., Shatsky V.S. Exhumation of the high-pressure rocks of the Kokchetav massif: facts and models. Lithos 2004, 78:307-318.
12. Evans K.A. The redox budget of subduction zones. Earth Sci. Rev. 2012, 113:11-32.
13. Evans K.A., Powell P. The effect of subduction on the sulphur, carbon and redox budget of lithospheric mantle. J. Metamorph. Geol. 2015, 33(6):649-670.
14. Finger L.W. The uncertainty in the calculated ferric iron content of a microprobe analysis. Carnegie Inst. Washington, Year Book 71 1972, 600-603.
15. Frost D.J., McCammon C.A. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 2008, 36:389-420.
16. Frost D.J., Liebske C., Langenhorst F., McCammon C.A., Trønnes R.G., Rubie D.C. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 2004, 428:409-412.
17. Green D.H., Eggins S.M., Yaxley G. Mantle dynamics-the other carbon-cycle. Nature 1993, 365:210-211.
18. Greenwood N.N., Howe A.T. Mössbauer studies of Fe1-xO. Part I. The defect structure of quenched samples 1972, 110-116. J. Chem. Soc., Dalton Trans.
19. Haavik C., Stølen S., Fjellvåg H., Hanfland M., Häusermann D. Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-system at high pressure. Am. Mineral. 2000, 85:514-523.
20. Harte B., Richardson S. Mineral inclusions in diamonds track the evolution of a Mesozoic subducted slab beneath West Gondwanaland. Gondwana Res. 2012, 21:236-245.
21. Hirschmann M.M., Dasgupta R. The H/C ratios of Earth's near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 2009, 262:4-16.
22. Horita J., Polyakov V.B. Carbon-bearing iron phases and the carbon isotope composition of the deep Earth. PNAS 2015, 112(1):31-36.
23. Jacob D.E., Kronz A., Viljoen K.S. Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contrib. Mineral. Petrol. 2004, 146(5):566-576.
24. Kaminsky F. Mineralogy of the lower mantle: A review of 'super-deep' mineral inclusions in diamond. Earth Sci. Rev. 2012, 110:127-147.
25. Kaminsky F.V., Wirth R. Iron carbide inclusions in lower-mantle diamond from Juina. Brazil. Can. Mineral. 2011, 49:555-572.
26. Kennedy C.S., Kennedy G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 81(14):2467-2470.
27. Kerrick D.M., Connolly J.A.D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature 2001, 411:293-296.
28. Lecuyer C., Ricard Y. Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth's mantle and atmosphere. Earth Planet. Sci. Lett. 1999, 165:197-211.
29. Lord O.T., Walter M.J., Dasgupta R., Walker D., Clark S.M. Melting in the Fe-system to 70 GPa. Earth Planet. Sci. Lett. 2009, 284:157-167.
30. Luth R.W. Carbon and carbonates in the mantle. Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd 1999, 6:297-316. Geochem. Soc. Spec. Publ. Y. Fei, C.M. Bertka, B.O. Mysen (Eds.).
31. Luth R.W. Volatiles in Earth's mantle. Reference Module in Earth Systems and Environmental Sciences 2014, 3:355-391. Treatise on Geochemistry. second ed.
32. Manning P.G., Jones W., Birchall T. Mossbauer spectral studies of iron-enriched sediments from Hamilton Harbor, Ontario. Can. Mineral. 1980, 18:29l-299.
33. Marty B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 2012, 313-314:56-66.
34. McCammon C.A., Price D.C. Mossbauer spectra of FexO (> 0.95). Phys. Chem. Mineral. 1985, 11:250-254.
35. Palyanov Yu.N., Sokol A.G. The effect of composition of mantle fluids/melts on diamond formation processes. Lithos 2009, 112S:690-700.
36. Pal'yanov Yu.N., Sokol A.G., Borzdov Yu.M., Khokhryakov A.F. Fluid-bearing alkaline-carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study. Lithos 2002, 60:145-159.
37. Palyanov Yu.N., Borzdov Yu.M., Khokhryakov A.F., Kupriyanov I.N., Sokol A.G. Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 2010, 10:3169-3175.
38. Palyanov Y.N., Bataleva Y.V., Sokol A.G., Borzdov Y.M., Kupriyanov I.N., Reutsky V.N., Sobolev N.V. Mantle-slab interaction and redox mechanism of diamond formation. PNAS 2013, 110(51):20,408-20,413.
39. Palyanov Yu.N., Sokol A.G., Khokhryakov A.F., Kruk A.N. Conditions of diamond crystallization in kimberlite melt: experimental data. Russian Geology and Geophysics (Geologiya i Geofizika) 2015, 56(1-2):196-210. (254-272).
40. Plank T., Langmuir C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145:325-394.
41. Rohrbach A., Schmidt M.W. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 2011, 472:209-212.
42. Rohrbach A., Ballhaus C., Golla Schindler U., Ulmer P., Kamenetsky V.S., Kuzmin D.V. Metal saturation in the upper mantle. Nature 2007, 449:456-458.
43. Rohrbach A., Ballhaus C., Ulmer P., Golla Schindler U., Schönbohm D. Experimental evidence for a reduced metal-saturated upper mantle. J. Petrol. 2011, 52:717-731.
44. Rohrbach A., Ghosh S., Schmidt M.W., Wijbrans C.H., Klemme S. The stability of Fe-Ni carbides in the Earth's mantle: Evidence for a low Fe-Ni-melt fraction in the deep mantle. Earth Planet. Sci. Lett. 2014, 388:211-221.
45. Ryabchikov I.D. Mechanisms of diamond formation: reduction of carbonates or partial oxidation of hydrocarbons. Dokl. Earth Sci. 2009, 429(8):1346-1349.
46. Ryabchikov I.D., Kaminsky F.V. Physicochemical parameters of the material of mantle plumes: Evidence from the thermodynamic analysis of mineral inclusions in sublithospheric diamond. Geochem. Int. 2014, 52(11):903-911.
47. Schertl H.-P., Sobolev N.V. The Kokchetav Massif, Kazakhstan: "Type locality" of diamond-bearing UHP metamorphic rocks. J. Asian Earth Sci. 2013, 63:5-38.
48. Shen P., Bassett W.A., Liu L.-G. Experimental determination of the effects of pressure and temperature on the stoichiometry and phase relations of wustite. Geochim. Cosmochim. Acta 1983, 47:773-778.
49. Shirey S.B., Cartigny P., Frost D.G., Keshav S., Nestola F., Nimis P., Pearson D.G., Sobolev N.V., Walter M.J. Diamonds and the Geology of Mantle Carbon. Rev. Mineral. Geochem. 2013, 75:355-421.
50. Smith E.M., Kopylova M.G. Implications of metallic iron for diamonds and nitrogen in the sublithospheric mantle. Can. J. Earth Sci. 2014, 51(5):510-516.
51. Sobolev N.V., Efimova E.S., Pospelova L.N. Native iron in diamonds of Yakutiya and its paragenesis. Geologiya i Geofizika (Soviet Geology and Geophysics) 1981, 12:25-28. (18-21).
52. Sobolev V.N., McCammon C.A., Taylor L.A., Snyder G.A., Sobolev N.V. Precise Mössbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis. Am. Mineral. 1999, 84:78-85.
53. Stachel T., Harris J.W., Brey G.P. Rare and unusual mineral inclusions in diamonds from Mwadui. Tanzania. Contrib. Mineral. Petrol. 1998, 132:34-47.
54. Walter M.J., Kohn S.C., Araujo D., Bulanova G.P., Smith C.B., Gaillou E., Wang J., Steele A., Shirey S.B. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 2011, 333(6052):54-57.
55. Zedgenizov D.A., Yefimova E.S., Logvinova A.M., Shatsky V.S., Sobolev N.V. Ferropericlase inclusions in a diamond microcrystal from the Udachnaya kimberlite pipe. Yakutia. Dokl. Earth Sci. 2001, 377A(3):319-321.
|