Инд. авторы: Litasov K.D., Shatskiy A.F.
Заглавие: Composition of the Earth's core: A review
Библ. ссылка: Litasov K.D., Shatskiy A.F. Composition of the Earth's core: A review // Russian Geology and Geophysics. - 2016. - Vol.57. - Iss. 1. - P.22-46. - ISSN 1068-7971. - EISSN 1878-030X.
Внешние системы: DOI: 10.1016/j.rgg.2016.01.003; РИНЦ: 26855879; SCOPUS: 2-s2.0-84958606148; WoS: 000369723900004;
Реферат: eng: This paper provides the state-of-the-art discussion of major aspects of the composition and evolution of the Earth's core. A comparison of experimentally-derived density of Fe with seismological data shows that the outer liquid core has a homogeneous structure and a similar to 10% density deficit, whereas the solid inner core has a complex heterogeneous anisotropic structure and a similar to 5% density deficit. Recent estimations of the core-mantle boundary (CMB) and inner core boundary temperatures are equal to 3800-4200 K and 5200-5700 K, respectively. Si and O (up to 5-7 wt.%) are considered to be the most likely light element candidates in the liquid core. Cosmochemical estimates show that the core must contain about 2 wt.% S and new experimental data indicate that the inner core structure gives the best match to the properties of Fe carbides. Our best estimate of the Earth's core calls for 5-6 wt.% Si, 0.5-1.0 wt.% O, 1.8-1.9 wt.% S, and 2.0 wt.% C, with the Fe7C3 carbide being the dominant phase in the inner core. The study of short-lived isotope systems shows that the core could have formed early in the Earth's history within about 30-50 Myr after the formation of the Solar System, t(0) = 4567.2 +/- 0.5 Ma. Studies on the partitioning of siderophile elements between liquid iron and silicate melt suggest that the core material would be formed in a magma ocean at similar to 1000-1500 km depths and 3000-4000 K. The oxygen fugacity for the magma ocean is estimated to vary from 4-5 to 1-2 log units below the Iron-Wustite oxygen buffer. However, the data for Mo, W, and S suggest addition of a late veneer of 10-15% of oxidized chondritic material as a result of the Moon-forming giant impact. Thermal and energetics core models agree with the estimate of a mean CMB heat flow of 7-17 TW. The excess heat is transported out of the core via two large low shear velocity zones at the base of superplumes. These zones may not be stable in their positions over geologic time and could move according to cycles of mantle plume and plate tectonics. The CMB heat fluxes are controlled either by high heat production from the core or subduction of cold slabs, but in both cases are closely linked with surface geodynamic processes and plate tectonic motions. Considerable amounts of exchange may have occurred between the core and mantle early in the Earth's history even up to the formation of a basal magma ocean. However, the extent of material exchange across the CMB upon cooling of the mantle was no greater than 1-2% of the core's mass, which, however, was sufficient to supply thermochemical plumes with volatiles H, C, and S. (C) 2016, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
Ключевые слова: FE-C SYSTEM; DEEP MAGMA-OCEAN; HF-W CHRONOMETRY; HIGH-PRESSURE IMPLICATIONS; SILICATE PARTITION-COEFFICIENTS; X-RAY-SCATTERING; DIAMOND-ANVIL CELL; SOUND-VELOCITY MEASUREMENTS; silicates; magma ocean; melt; iron; high pressure; mantle; core; EQUATION-OF-STATE; INNER-CORE;
Издано: 2016
Физ. характеристика: с.22-46
Цитирование: 1. Adler J.F., Williams Q. A high-pressure X-ray diffraction study of iron nitrides: Implications for Earth's core. J. Geophys. Res.-Solid Earth 2005, 110:B01203. 10.1029/02004jb003103. 2. Aitta A. Iron melting curve with a tricritical point. Journal of Statistical Mechanics: Theory and Experiment 2006, 12. 3. Albarede F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 2009, 461:1227-1233. 4. Alboussiere T., Deguen R., Melzani M. Melting-induced stratification above the Earth's inner core due to convective translation. Nature 2010, 466:744-747. 5. Alfe D., Gillan M., Vocadlo L., Brodholt J., Price G. The ab initio simulation of the Earth's core. Philosophical Transactions of the Royal Society of London A: Math. Phys. Engineer. Sci. 2002, 360:1227-1244. 6. Alfe D., Gillan M.J., Price G.D. Composition and temperature of the Earth's core constrained by combining ab initio calculations and seismic data. Earth Planet. Sci. Lett. 2002, 195:91-98. 7. Allegre C., Manhes G., Lewin E. Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet. Sci. Lett. 2001, 185:49-69. 8. Amelin Y., Kaltenbach A., Iizuka T., Stirling C.H., Ireland T.R., Petaev M., Jacobsen S.B. U-Pb chronology of the Solar System's oldest solids with variable 238U/235U. Earth Planet. Sci. Lett. 2010, 300:343-350. 9. Andrault D., Bolfan-Casanova N., Nigro G.L., Bouhifd M.A., Garbarino G., Mezouar M. Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 2011, 304:251-259. 10. Antonangeli D., Ohtani E. Sound velocity of hcp-Fe at high pressure: experimental constraints, extrapolations and comparison with seismic models. Progress in Earth and Planetary Sciences 2015, 2:1-11. 11. Antonangeli D., Occelli F., Requardt H., Badro J., Fiquet G., Krisch M. Elastic anisotropy in textured hcp-iron to 112 GPa from sound wave propagation measurements. Earth Planet. Sci. Lett. 2004, 225:243-251. 12. Antonangeli D., Siebert J., Badro J., Farber D.L., Fiquet G., Morard G., Ryerson F.J. Composition of the Earth's inner core from high-pressure sound velocity measurements in Fe-Ni-Si alloys. Earth Planet. Sci. Lett. 2010, 295:292-296. 13. Antonangeli D., Komabayashi T., Occelli F., Borissenko E., Walters A.C., Fiquet G., Fei Y. Simultaneous sound velocity and density measurements of hcp iron up to 93 GPa and 1100 K: An experimental test of the Birch's law at high temperature. Earth Planet. Sci. Lett. 2012, 331:210-214. 14. Anzellini S., Dewaele A., Mezouar M., Loubeyre P., Morard G. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. Science 2013, 340:464-466. 15. Asahara Y., Kubo T., Kondo T. Phase relations of a carbonaceous chondrite at lower mantle conditions. Phys. Earth Planet. Inter. 2004, 143-144:421-432. 16. Asanuma, H., Ohtani, E., Sakai, T., Terasaki, H., Kamada, S., Hirao, N., Sata, N., Ohishi, Y., 2008. Phase relations of Fe-Si alloy up to core conditions: Implications for the Earth inner core. Geophys. Res. Lett. 35, L12307, doi: 10.11029/12008gl033863. 17. Asanuma H., Ohtani E., Sakai T., Terasaki H., Kamada S., Kondo T., Kikegawa T. Melting of iron-silicon alloy up to the core-mantle boundary pressure: implications to the thermal structure of the Earth's core. Phys. Chem. Mineral. 2010, 37:353-359. 18. Asanuma H., Ohtani E., Sakai T., Terasaki H., Kamada S., Hirao N., Ohishi Y. Static compression of Fe0.83Ni0.09Si0.08alloy to 374 GPa and Fe0.93Si0.07alloy to 252 GPa: Implications for the Earth's inner core. Earth Planet. Sci. Lett. 2011, 310:113-118. 19. Badro J., Fiquet G., Guyot F., Gregoryanz E., Occelli F., Antonangeli D., d'Astuto M. Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth's core. Earth Planet. Sci. Lett. 2007, 254:233-238. 20. Badro J., Cote A.S., Brodholt J.P. A seismologically consistent compositional model of Earth's core. Proc. Nat. Acad. Sci. 2014, 111:75427545. 21. Bazhanova Z.G., Oganov A.R., Gianola O. Fe-and Fe-systems at pressures of the Earth's inner core. Uspekhi Fizicheskikh Nauk 2012, 182:521-530. 22. Belonoshko A.B., Ahuja R., Johansson B. Stability of the body-centred-cubic phase of iron in the Earth's inner core. Nature 2003, 424:1032-1034. 23. Belonoshko, A.B., Rosengren, A., Burakovsky, L., Preston, D.L., Johansson, B., 2009. Melting of Fe and Fe0.9375S0.0625at Earth's core pressures studied using ab initio molecular dynamics. Phys. Rev. B 79, 220102. 24. Bennett N.R., Brenan J.M. Controls on the solubility of rhenium in silicate melt: Implications for the osmium isotopic composition of Earth's mantle. Earth Planet. Sci. Lett. 2013, 361:320-332. 25. Bennett N., Brenan J., Koga K. The solubility of platinum in silicate melt under reducing conditions: Results from experiments without metal inclusions. Geochim. Cosmochim. Acta 2014, 133:422-442. 26. Bergman M.I. Measurements of electric anisotropy due to solidification texturing and the implications for the Earth's inner core. Nature 1997, 389:60-63. 27. Birch F. Elasticity and constitution of the Earth's interior. J. Geophys. Res. 1952, 57:227-286. 28. Birch, F., 1964. Density and composition of mantle and core. J. Geophys. Res. 69, 4377-388. 29. Bouhifd M.A., Jephcoat A.P. The effect of pressure on partitioning of Ni and Co between silicate and iron-rich metal liquids: a diamond-anvil cell study. Earth Planet. Sci. Lett. 2003, 209:245-255. 30. Bouhifd M.A., Jephcoat A.P. Convergence of Ni and Co metal-silicate partition coefficients in the deep magma-ocean and coupled silicon-oxygen solubility in iron melts at high pressures. Earth Planet. Sci. Lett. 2011, 307:341-348. 31. Boujibar A., Andrault D., Bouhifd M.A., Bolfan-Casanova N., Devidal J.-L., Trcera N. Metal-silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion. Earth Planet. Sci. Lett. 2014, 391:42-54. 32. Brenan J.M., McDonough W.F. Core formation and metal-silicate fractionation of osmium and iridium from gold. Nat. Geosci. 2009, 2:798-801. 33. Brown, J.M., McQueen, R.G., 1986. Phase transitions, Gruneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res.: Solid Earth 91, 7485-7494. 34. Bullen K. Compressibility-pressure hypothesis and the Earth's interior. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society 1949, 5:335-368. 35. Buffett B.A., Garnero E.J., Jeanloz R. Sediments at the top of Earth's core. Science 2000, 290:1338-1342. 36. Busse F. A model of the geodynamo. Geophys. J. Int. 1975, 42:437-459. 37. Canil D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett. 2002, 195:75-90. 38. Chen B., Li Z., Zhang D., Liu J., Hu M.Y., Zhao J., Bi W., Alp E.E., Xiao Y., Chow P., Li J. Hidden carbon in Earth's inner core revealed by shear softening in dense Fe7C3. Proc. Nat. Acad. Sci. 2014, 111:17,755-17,758. 39. Corgne A., Wood B.J., Fei Y. C and S-rich molten alloy immiscibility and core formation of planetesimals. Geochim. Cosmochim. Acta 2008, 72:2409-2416. 40. Courtillot V., Davaille A., Besse J., Stock J. Three distinct types of hotspots in the Earth's mantle. Earth Planet. Sci. Lett. 2003, 205:295-308. 41. de Koker, N., Steinle-Neumann, G., Vlček, V., 2012. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth's core. Proc. Nat. Acad. Sci. 109, 4070-073. 42. Decremps F., Antonangeli D., Gauthier M., Ayrinhac S., Morand M., Marchand G.L., Bergame F., Philippe J. Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell. Geophys. Res. Lett. 2014, 41:1459-1464. 43. Delano J.W. Redox history of the Earth's interior since 3900 Ma: implications for prebiotic molecules. Origins Life Evol. Biosphere 2001, 31:311-341. 44. Deuss A. Heterogeneity and anisotropy of Earth's inner core. Ann. Rev. Earth Planet. Sci. 2014, 42:103-126. 45. Dewaele A., Loubeyre P., Occelli F., Mezouar M., Dorogokupets P.I., Torrent M. Quasihydrostatic equation of state of iron above 2 Mbar. Phys. Rev. Lett. 2006, 97:215504. 46. Dobretsov, N.L., 1994. Periodicity of geological processes and depth geodynamics. Geologiya i Geofizika (Russian Geology and Geophysics) 35 (5), 5-19 (2-14). 47. Dobretsov, N.L., 2010. Global geodynamic evolution of the Earth and global geodynamic models. Russian Geology and Geophysics (Geologiya i Geofizika) 51 (6), 592-610 (761-784). 48. Dobretsov N.L. Fundamentals of Tectonics and Geodynamics [in Russian] 2011, Izd. Novosibirsk. Gos. Univ, Novosibirs. 49. Dobretsov, N.L., Shatskiy, A.F., 2012. Deep carbon cycle and geodynamics: The role of the core and carbonatite melts in the lower mantle. Russian Geology and Geophysics (Geologiya i Geofizika) 53 (11), 1117-1132 (1455-1475). 50. Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A. Deep-Seated Geodynamics [in Russian] 2001, Izd. SO RAN, Filial Geo, Novosibirsk. second ed. 51. Dobretsov, N.L., Kirdyashkin, A.G., Kirdyashkin, A.A., 2005. Parameters of hot spots and thermochemical plumes. Russian Geology and Geophysics (Geologiya i Geofizika) 46 (6), 575-588 (589-602). 52. Dobretsov N.L., Kirdyashkin A.A., Kirdyashkin A.G., Vernikovsky V.A., Gladkov I.N. Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos 2008, 100:66-92. 53. Dobretsov, N.L., Kouilakov, I.Yu., Litasov, K.D., Kukarina, E.V., 2015. An integrate model of subduction: contributions from geology, experimental petrology, and seismic tomography. Russian Geology and Geophysics (Geologiya i Geofizika) 56 (1-2), 13-38 (21-55). 54. Dziewonski A.M., Anderson D.L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 1981, 25:297-356. 55. Ertel W., Walter M.J., Drake M.J., Sylvester P.J. Experimental study of platinum solubility in silicate melt to 14 GPa and 2273 K: implications for accretion and core formation in Earth. Geochim. Cosmochim. Acta 2006, 70:2591-2602. 56. Fei Y., Brosh E. Experimental study and thermodynamic calculations of phase relations in the Fe-system at high pressure. Earth Planet. Sci. Lett. 2014, 408:155-162. 57. Fiquet G., Auzende A., Siebert J., Corgne A., Bureau H., Ozawa H., Garbarino G. Melting of peridotite to 140 gigapascals. Science 2010, 329:1516-1518. 58. Fischer R.A., Campbell A.J., Shofner G.A., Lord O.T., Dera P., Prakapenka V.B. Equation of state and phase diagram of FeO. Earth Planet. Sci. Lett. 2011, 304:496-502. 59. Fischer R.A., Campbell A.J., Caracas R., Reaman D.M., Dera P., Prakapenka V.B. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core. Earth Planet. Sci. Lett. 2012, 357:268-276. 60. Fischer, R.A., Campbell, A.J., Caracas, R., Reaman, D.M., Heinz, D.L., Dera, P., Prakapenka, V.B., 2014. Equations of state in the Fe-FeSi system at high pressures and temperatures. J. Geophys. Res.: Solid Earth 119, 2810-2827. 61. Fischer R.A., Nakajima Y., Campbell A.J., Frost D.J., Harries D., Langenhorst F., Miyajima N., Pollok K., Rubie D.C. High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim. Cosmochim. Acta 2015, 167:177-194. 62. Frost D.J., Mann U., Asahara Y., Rubie D.C. The redox state of the mantle during and just after core formation. Philos. Trans. R. Soc. Ser. A: Math. Phys. Eng. Sci. 2008, 366:4315-4337. 63. Gao L., Chen B., Wang J., Alp E.E., Zhao J., Lerche M., Sturhahn W., Scott H.P., Huang F., Ding Y., Sinogeikin S.V., Lundstrom C.C., Bass J.D., Li J. Pressure-induced magnetic transition and sound velocities of Fe3C: Implications for carbon in the Earth's inner core. Geophys. Res. Lett. 2008, 35. 10.1029/2008GL034817. 64. Garcia R., Souriau A. Amplitude of the core-mantle boundary topography estimated by stochastic analysis of core phases. Phys. Earth Planet. Inter. 2000, 117:345-359. 65. Garnero E.J., Helmberger D.V. Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific. Geophys. Res. Lett. 1996, 23:977-980. 66. Genda H., Abe Y. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 2005, 433:842-844. 67. Gessmann C., Wood B. Potassium in the Earth's core?. Earth Planet. Sci. Lett. 2002, 200:63-78. 68. Gessmann C., Wood B., Rubie D., Kilburn M. Solubility of silicon in liquid metal at high pressure: implications for the composition of the Earth's core. Earth Planet. Sci. Lett. 2001, 184:367-376. 69. Gomi H., Ohta K., Hirose K., Labrosse S., Caracas R., Verstraete M.J., Hernlund J.W. The high conductivity of iron and thermal evolution of the Earth's core. Phys. Earth Planet. Inter. 2013, 224:88-103. 70. Gu T., Fei Y., Wu X., Qin S. High-pressure behavior of Fe3P and the role of phosphorus in planetary cores. Earth Planet. Sci. Lett. 2014, 390:296-303. 71. Halliday A.N. The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 2013, 105:146-171. 72. Halliday A.N., Wood B.J. The composition and major reservoirs of the Earth around the time of the Moon-forming giant impact. Schubert, G. (Ed.), Treatise on Geophysics, second ed. Elsevier, Oxford 2015, 9:11-42. 73. Halliday A., Stirling C., Freedman P., Oberli F., Reynolds B., Georg R. High precision isotope ratio measurements using multiple collector inductively coupled plasma mass spectrometry. Encyclopedia of Mass Spectrometry 2010, 5:242-260. 74. Helffrich G., Kaneshima S. Outer-core compositional stratification from observed core wave speed profiles. Nature 2010, 468:807-810. 75. Herndon J.M. Substructure of the inner core of the Earth. Proc. Nat. Acad. Sci. 1996, 93:646-648. 76. Hernlund J.W., McNamara A.K. The core-mantle boundary region. Schubert, G. (Ed.), Treatise on Geophysics, second ed. Elsevier, Oxford 2015, 7:461-519. 77. Hernlund J.W., Thomas C., Tackley P.J. A doubling of the postperovskite phase boundary and structure of the Earth's lowermost mantle. Nature 2005, 434:882-886. 78. Hirao, N., Kondo, T., Ohtani, E., Takemura, K., Kikegawa, T., 2004. Compression of iron hydride to 80 GPa and hydrogen in the Earth's inner core. Geophys. Res. Lett. 31, L06616, doi: 10.01029/02003GL019380. 79. Hirose K., Labrosse S., Hernlund J. Composition and state of the core. Ann. Rev. Earth Planet. Sci. 2013, 41:657-691. 80. Huang, H., Hu, X., Jing, F., Cai, L., Shen, Q., Gong, Z., Liu, H., 2010. Melting behavior of Fe-O-at high pressure: A discussion on the melting depression induced by O and S. J. Geophys. Res.: Solid Earth 115, B05207, doi: 10.01029/02009JB006514. 81. Huang H., Fei Y., Cai L., Jing F., Hu X., Xie H., Zhang L., Gong Z. Evidence for an oxygen-depleted liquid outer core of the Earth. Nature 2010, 479:513-516. 82. Ichikawa, H., Tsuchiya, T., Tange, Y., 2014. The P-V-equation of state and thermodynamic properties of liquid iron. J. Geophys. Res.: Solid Earth 119, 240-252. 83. Jacobsen B., Yin Q., Moynier F., Amelin Y., Krot A.N., Nagashima K., Hutcheon I.D., Palme H. 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett. 2008, 272:353-364. 84. Jones C.A. Thermal and compositional convection in the outer core. Schubert, G. (Ed.), Treatise on Geophysics, second ed. Elsevier, Oxford 2015, 8:115-159. 85. Kamada S., Ohtani E., Terasaki H., Sakai T., Miyahara M., Ohishi Y., Hirao N. Melting relationships in the Fe-Fe3S system up to the outer core conditions. Earth Planet. Sci. Lett. 2012, 359:26-33. 86. Kamada S., Ohtani E., Fukui H., Sakai T., Terasaki H., Takahashi S., Shibazaki Y., Tsutsui S., Baron A.Q., Hirao N. The sound velocity measurements of Fe3S. Am. Mineral. 2014, 99:98-101. 87. Kanda, R.V.S., Stevenson, D.J., 2006. Suction mechanism for iron entrainment into the lower mantle. Geophys. Res. Lett. 33, L02310, doi: 10.01029/ 02005GL025009. 88. Kantor A.P., Kantor I.Y., Kurnosov A.V., Kuznetsov A.Y., Dubrovinskaia N.A., Krisch M., Bossak A.A., Dmitriev V.P., Urusov V.S., Dubrovinsky L.S. Sound wave velocities of fcc Fe-Ni alloy at high pressure and temperature by mean of inelastic X-ray scattering. Phys. Earth Planet. Inter. 2007, 164:83-89. 89. Katsura T., Yoneda A., Yamazaki D., Yoshino T., Ito E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 2010, 183:212-218. 90. Kawazoe T., Ohtani E. Reaction between liquid iron and (Mg, Fe)SiO3-perovskite and solubilities of Si and O in molten iron at 27 GPa. Phys. Chem. Mineral. 2006, 33:227-234. 91. Kleine T., Rudge J.F. Chronometry of meteorites and the formation of the Earth and Moon. Elements 2011, 7:41-46. 92. Kleine T., Munker C., Mezger K., Palme H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-chronometry. Nature 2002, 418:952-955. 93. Kleine T., Touboul M., Bourdon B., Nimmo F., Mezger K., Palme H., Jacobsen S.B., Yin Q.-Z., Halliday A.N. Hf-chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 2009, 73:5150-5188. 94. Komabayashi, T., 2014. Thermodynamics of melting relations in the system Fe-FeO at high pressure: Implications for oxygen in the Earth's core. J. Geophys. Res.: Solid Earth 119, 4164-4177. 95. Koot L., Dumberry M. Viscosity of the Earth's inner core: Constraints from nutation observations. Earth Planet. Sci. Lett. 2011, 308:343-349. 96. Kuskov O.L., Khitarov N.I. Thermodynamics and Geochemistry of the Earth's Core and Mantle [in Russian] 1982, Nauka, Moscow. 97. Kuwayama Y., Sawai T., Hirose K., Sata N., Ohishi Y. Phase relations of iron-silicon alloys at high pressure and high temperature. Phys. Chem. Mineral. 2009, 36:511-518. 98. Labrosse S. Thermal and compositional stratification of the inner core. Comptes Rendus Geoscience 2014, 346:119-129. 99. Labrosse S. Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet. Inter. 2015, 247:36-55. 100. Labrosse S., Hernlund J., Coltice N. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 2007, 450:866-869. 101. Lay T. Deep Earth structure: lower mantle andD". Schubert, G. (Ed.), Treatise on Geophysics, second ed. Elsevier, Oxford 2015, 1:683-723. 102. Lay T., Hernlund J., Garnero E.J., Thorne M.S. A Postperovskite lens and D" heat flux beneath the Central Pacific. Science 2006, 314:1272-1276. 103. Leng, W., Zhong, S., 2008. Controls on plume heat flux and plume excess temperature. J. Geophys. Res.: Solid Earth 113, B04408, doi: 10.01029/ 02007JB005155. 104. Li J., Agee C. The effect of pressure, temperature, oxygen fugacity and composition on partitioning of nickel and cobalt between liquid Fe-Ni-alloy and liquid silicate: Implications for the Earth's core formation. Geochim. Cosmochim. Acta 2001, 65:1821-1832. 105. Li J., Fei Y. Experimental constraints on core composition. Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, second ed. Elsevier, Oxford 2014, 3:527-557. 106. Li J., Fei Y., Mao H., Hirose K., Shieh S. Sulfur in the Earth's inner core. Earth Planet. Sci. Lett. 2001, 193:509-514. 107. Li Y., Dasgupta R., Tsuno K. The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 °C: Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles. Earth Planet. Sci. Lett. 2015, 415:54-66. 108. Lin J.-F., Struzhkin V.V., Sturhahn W., Huang E., Zhao J., Hu M.Y., Alp E.E., Mao H.-K., Boctor N., Hemley R.J. Sound velocities of iron-nickel and iron-silicon alloys at high pressures. Geophys. Res. Lett. 2003, 30:2112. 10.1029/2003GL018405. 109. Lin J.-F., Fei Y., Sturhahn W., Zhao J., Mao H.K., Hemley R.J. Magnetic transition and sound velocities of Fe3S at high pressure: implications for Earth and planetary cores. Earth Planet. Sci. Lett. 2004, 226:33-40. 110. Lin J.F., Sturhahn W., Zhao J.Y., Shen G.Y., Mao H.K., Hemley R.J. Sound velocities of hot dense iron: Birch's law revisited. Science 2004, 308:1892-1894. 111. Lin J.F., Scott H.P., Fischer R.A., Chang Y.Y., Kantor I., Prakapenka V.B. Phase relations of Fe-Si alloy in Earth's core. Geophys. Res. Lett. 2009, 36. 10.1029/2008GL036990. 112. Litasov, K.D., Sharygin, I.S., Dorogokupets, P.I., Shatskiy, A., Gavryushkin, P.N., Sokolova, T.S., Ohtani, E., Li, J., Funakoshi, K., 2013a. Thermal equation of state and thermodynamic properties of iron carbide Fe3C to 31 GPa and 1473 K. J. Geophys. Res.: Solid Earth 118, 5274-5284. 113. Litasov K.D., Shatskiy A.F., Ovchinnikov S.G., Popov Z.I., Ponomarev D.S., Ohtani E. Phase transformations of Fe3N-Fe4N iron nitrides at pressures up to 30 GPa studied by in situ X-ray diffractometry. JETP Lett. 2013, 98(12):805-808. 114. Litasov, K.D., Popov, Z.I., Gavryushkin, P.N., Ovchinnikov, S.G., Fedorov, A.S., 2015a. First-principles calculations of the equations of state and relative stability of iron carbides at the Earth's core pressures. Russian Geology and Geophysics (Geologiya i Geofizika) 56, 164-171 (214-223). 115. Litasov, K.D., Shatskiy, A.F., Ohtani, E., 2015b. Hydrogenation of Fe-bearing compounds at 6-20 GPa, in: Abst. Vol. of Int. Symp. "Advances in High Pressure Research II" (Litasov, K.D. and Ohtani, E. Eds.). Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia, p. 11. 116. Lobanov S.S., Chen P.-N., Chen X.-J., Zha C.-S., Litasov K.D., Mao H.-K., Goncharov A.F. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nature Communications 2013, 4:2446. 10.1038/ncomms3446. 117. Lodders K. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal 2003, 591:1220-1247. 118. Lord O.T., Walter M.J., Dasgupta R., Walker D., Clark S.M. Melting in the Fe-system to 70 GPa. Earth Planet. Sci. Lett. 2009, 284:157-167. 119. Lord, O., Walter, M., Dobson, D., Armstrong, L., Clark, S., Kleppe, A., 2010. The FeSi phase diagram to 150 GPa. J. Geophys. Res.: Solid Earth 115, B06208, doi: 10.01029/02009JB006528. 120. Mann U., Frost D.J., Rubie D.C. Evidence for high-pressure core-mantle differentiation from the metal-silicate partitioning of lithophile and weakly-siderophile elements. Geochim. Cosmochim. Acta 2009, 73:7360-7386. 121. Mann U., Frost D.J., Rubie D.C., Becker H., Audetat A. Partitioning of Ru, Rh, Pd, Re Ir and Pt between liquid metal and silicate at high pressures and high temperatures-Implications for the origin of highly siderophile element concentrations in the Earth's mantle. Geochim. Cosmochim. Acta 2012, 84:593-613. 122. Manthilake G.M., de Koker N., Frost D.J., McCammon C.A. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core. Proc. Nat. Acad. Sci. 2011, 108:17,901-17,904. 123. Mao, W.L., Sturhahn, W., Heinz, D.L., Mao, H.-K., Shu, J., Hemley, R.J., 2004. Nuclear resonant x-ray scattering of iron hydride at high pressure. Geophys. Res. Lett. 31, L15618, doi: 10.11029/12004GL020541. 124. Mao Z., Lin J.-F., Liu J., Alatas A., Gao L., Zhao J., Mao H.-K. Sound velocities of Fe and Fe-Si alloy in the Earth's core. Proc. Nat. Acad. Sci. 2012, 109:10,239-10,244. 125. Martorell B., Vocvadlo L., Brodholt J., Wood I.G. Strong Premelting Effect in the Elastic Properties of hcp-Fe Under Inner-Core Conditions. Science 2013, 342:466-468. 126. Marty B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 2012, 313:56-66. 127. Masters G., Gubbins D. On the resolution of density within the Earth. Phys. Earth Planet. Inter. 2003, 140:159-167. 128. Mattesini, M., Belonoshko, A., Tkalcic, H., Buforn, E., Udias, A., Ahuja, R., 2013. Candy wrapper for the Earth's inner core. Scientific Reports 3, 2096, doi: 2010.1038/srep02096. 129. McDonough W.F. Compositional model for the Earth's core. Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, second ed. Elsevier, Oxford 2014, 3:559-577. 130. Minobe S., Nakajima Y., Hirose K., Ohishi Y. Stability and compressibility of a new iron-nitride p-Fe?N3to core pressures. Geophys. Res. Lett. 2015, 42:5206-5211. 131. Monnereau M., Calvet M., Margerin L., Souriau A. Lopsided growth of Earth's inner core. Science 2010, 328:1014-1017. 132. Morard G., Katsura T. Pressure-temperature cartography of Fe-S-Si immiscible system. Geochim. Cosmochim. Acta 2010, 74:3659-3667. 133. Morard G., Andrault D., Guignot N., Siebert J., Garbarino G., Antonangeli D. Melting of Fe-Ni-Si and Fe-Ni-alloys at megabar pressures: implications for the core-mantle boundary temperature. Phys. Chem. Mineral. 2011, 38:767-776. 134. Morard G., Andrault D., Antonangeli D., Bouchet J. Properties of iron alloys under the Earth's core conditions. Comptes Rendus Geoscience 2014, 346:130-139. 135. Murakami M., Hirose K., Kawamura K., Sata N., Ohishi Y. Postperovskite phase transition in MgSiO3. Science 2004, 304:855-858. 136. Narygina O., Dubrovinsky L.S., McCammon C.A., Kurnosov A., Kantor I.Y., Prakapenka V.B., Dubrovinskaia N.A. X-ray diffraction and Mossbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth's core. Earth Planet. Sci. Lett. 2011, 307:409-414. 137. Nguyen J.H., Holmes N.C. Melting of iron at the physical conditions of the Earth's core. Nature 2004, 427:339-342. 138. Nimmo F. Energetics of the core. Schubert, G. (Ed.), Treatise on Geophysics, second ed. Elsevier, Oxford 2015, 8:27-55. 139. Nimmo F. Thermal and compositional evolution of the core. Schubert, G. (Ed.), Treatise on Geophysics, second ed. Elsevier, Oxford 2015, 9:201-219. 140. Ohta K., Cohen R.E., Hirose K., Haule K., Shimizu K., Ohishi Y. Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure. Phys. Rev. Lett. 2012, 108:026403. 141. Ohtani E. Chemical and Physical Properties and Thermal State of the Core. Physics and Chemistry of the Deep Earth 2013, 244-270. Wiley-Blackwell, Oxford, UK. S. Karato (Ed.). 142. Ohtani E., Shibazaki Y., Sakai T., Mibe K., Fukui H., Kamada S., Sakamaki T., Seto Y., Tsutsui S., Baron A.Q. Sound velocity of hexagonal close-packed iron up to core pressures. Geophys. Res. Lett. 2013, 40:5089-5094. 143. Ohtani, E., Mibe, K., Sakamaki, T., Kamada, S., Takahashi, S., Fukui, H., Tsutsui, S., Baron, A.Q.R., 2015. Sound velocity measurement by inelastic X-ray scattering at high pressure and temperature by resistive heating diamond anvil cell. Russian Geology and Geophysics (Geologiya i Geofizika) 56, 190-195 (247-253). 144. Okuchi T. Hydrogen partitioning into molten iron at high pressure: implications for Earth's core. Science 1997, 278:1781-1784. 145. Ozawa H., Hirose K., Mitome M., Bando Y., Sata N., Ohishi Y. Experimental study of reaction between perovskite and molten iron to 146 GPa and implications for chemically distinct buoyant layer at the top of the core. Phys. Chem. Mineral. 2009, 36:355-363. 146. Ozawa H., Hirose K., Tateno S., Sata N., Ohishi Y. Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa. Phys. Earth Planet. Inter. 2010, 179:157-163. 147. Ozawa H., Hirose K., Ohta K., Ishii H., Hiraoka N., Ohishi Y., Seto Y. Spin crossover, structural change, and metallization in NiAs-type FeO at high pressure. Phys. Rev. B 2011, 84:134417. 148. Ozawa H., Takahashi F., Hirose K., Ohishi Y., Hirao N. Phase transition of FeO and stratification in Earth's outer core. Science 2011, 334:792-794. 149. Ozawa H., Hirose K., Suzuki T., Ohishi Y., Hirao N. Decomposition of Fe3S above 250 GPa. Geophys. Res. Lett. 2013, 40:4845-4849. 150. Palme H., O'Neill H.S.C. Cosmochemical estimates of mantle composition. Turekian, K.K. Holland, H.D. (Ed.), Treatise on Geochemistry, second ed. Elsevier, Oxford 2014, 3:1-39. 151. Poirier J.P. Light elements in the Earth's outer core: a critical review. Phys. Earth Planet. Inter. 1994, 85:319-337. 152. Popov Z.I., Litasov K.D., Gavryushkin P.N., Ovchinnikov S.G., Fedorov A.S. Theoretical study of y '-Fe4N and 8-Fe.xN iron nitrides at pressures up to 500 GPa. JETP Lett 2015, 101(6):371-375. 153. Pozzo M., Davies C., Gubbins D., Alfe D. Thermal and electrical conductivity of iron at Earth's core conditions. Nature 2012, 485:355-358. 154. Pozzo M., Davies C., Gubbins D., Alfe D. Transport properties for liquid silicon-oxygen-iron mixtures at Earth's core conditions. Phys. Rev. B 2013, 87:014110. 155. Prescher C., Dubrovinsky L., Bykova E., Kupenko I., Glazyrin K., Kantor A., McCammon C., Mookherjee M., Nakajima Y., Miyajima N. High Poisson's ratio of Earth's inner core explained by carbon alloying. Nat. Geosci. 2015, 8:220-223. 156. Ricolleau, A., Fei, Y., Corgne, A., Siebert, J., Badro, J., 2011. Oxygen and silicon contents of Earth's core from high pressure metal-silicate partitioning experiments. Earth Planet. Sci. Lett. 310, 409-21. 157. Righter K. Prediction of metal-silicate partition coefficients for siderophile elements: An update and assessment of PT conditions for metal-silicate equilibrium during accretion of the Earth. Earth Planet. Sci. Lett. 2011, 304:158-167. 158. Righter K. Modeling siderophile elements during core formation and accretion, and the role of the deep mantle and volatiles. Am. Mineral. 2015, 100:1098-1109. 159. Righter K., Danielson L., Drake M.J., Domanik K. Partition coefficients at high pressure and temperature. Turekian, H.D.H.K. (Ed.), Treatise on Geochemistry, second ed. Elsevier, Oxford 2014, 3:449-477. 160. Rohrbach A., Ghosh S., Schmidt M.W., Wijbrans C.H., Klemme S. The stability of Fe-Ni carbides in the Earth's mantle: Evidence for a low Fe-Ni-melt fraction in the deep mantle. Earth Planet. Sci. Lett. 2014, 388:211-221. 161. Rost S., Revenaugh J. Seismic detection of rigid zones at the top of the core. Science 2001, 294:1911-1914. 162. Rubie D.C., Frost D.J., Mann U., Asahara Y., Nimmo F., Tsuno K., Kegler P., Holzheid A., Palme H. Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 2011, 301:31-42. 163. Rubie D.C., Nimmo F., Melosh H.J. Formation of the Earth's core. Schubert, G. (Ed.), Treatise on Geophysics, second ed. Elsevier, Oxford 2015, 9:43-79. 164. Sakai, T., Kondo, T., Ohtani, E., Terasaki, H., Endo, N., Kuba, T., Suzuki, T., Kikegawa, T., 2006. Interaction between iron and postperovskite at core-mantle boundary and core signature in plume source region. Geophys. Res. Lett. 33, L15317, doi: 10.11029/12006GL026868. 165. Sakamaki K., Takahashi E., Nakajima Y., Nishihara Y., Funakoshi K., Suzuki T., Fukai Y. Melting phase relation of FeHx up to 20 GPa: Implication for the temperature of the Earth's core. Phys. Earth Planet. Inter. 2009, 174:192-201. 166. San-Martin A., Manchester F. The Fe-(iron-hydrogen) system. Bulletin of Alloy Phase Diagrams 1990, 11:173-184. 167. Savage P.S., Armytage R.M., Georg R.B., Halliday A.N. High temperature silicon isotope geochemistry. Lithos 2014, 190:500-519. 168. Seagle C.T., Cottrell E., Fei Y., Hummer D.R., Prakapenka V.B. Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure. Geophys. Res. Lett. 2013, 40:5377-5381. 169. Shahar A., Hillgren V.J., Young E.D., Fei Y., Macris C.A., Deng L. High-temperature Si isotope fractionation between iron metal and silicate. Geochim. Cosmochim. Acta 2011, 75:7688-7697. 170. Shibazaki Y., Ohtani E., Terasaki H., Tateyama R., Sakamaki T., Tsuchiya T., Funakoshi K. Effect of hydrogen on the melting temperature of FeS at high pressure: Implications for the core of Ganymede. Earth Planet. Sci. Lett. 2011, 301:153-158. 171. Shibazaki Y., Ohtani E., Fukui H., Sakai T., Kamada S., Ishikawa D., Tsutsui S., Baron A.Q., Nishitani N., Hirao N. Sound velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: Implications for the composition of the Earth's core. Earth Planet. Sci. Lett. 2012, 313:79-85. 172. Sidorin I., Gurnis M., Helmberger D.V. Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science 1999, 286:1326-1331. 173. Siebert J., Badro J., Antonangeli D., Ryerson F.J. Metal-silicate partitioning of Ni and Co in a deep magma ocean. Earth Planet. Sci. Lett. 2012, 321-322:189-197. 174. Siebert J., Badro J., Antonangeli D., Ryerson F.J. Terrestrial accretion under oxidizing conditions. Science 2013, 339:1194-1197. 175. Singh S., Taylor M., Montagner J. On the presence of liquid in Earth's inner core. Science 2000, 287:2471-2474. 176. Sokolova, T.S, Dorogokupets, P.I., Litasov, K.D., 2013. Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2-NaCl, as well as Au, Pt, and other metals to 4 Mbar and 3000 K. Russian Geology and Geophysics (Geologiya i Geofizika) 54 (2), 181-199 (237-261). 177. Song X., Helmberger D.V. Anisotropy of Earth's inner core. Geophys. Res. Lett. 1993, 20:2591-2594. 178. Song X., Helmberger D.V. A P wave velocity model of Earth's core. J. Geophys. Res. B 1995, 100:9817-9830. 179. Souriau A., Calvet M. Deep earth structure: The Earth's cores. Schubert, G. (Ed.), Treatise on Geophysics, second ed. Elsevier, Oxford 2015, 1:725-757. 180. Stacey F.D., Anderson O.L. Electrical and thermal conductivities of Fe-Ni-Si alloy under core conditions. Phys. Earth Planet. Inter. 2001, 124:153-162. 181. Stewart A.J., Schmidt M.W., van Westrenen W., Liebske C. Mars: A new core-crystallization regime. Science 2007, 316:1323-1325. 182. Tackley P.J. Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth-Sci. Rev. 2012, 110:1-25. 183. Takafuji, N., Hirose, K., Mitome, M., Bando, Y., 2005. Solubilities of O and Si in liquid iron in equilibrium with (Mg, Fe)SiO3 perovskite and the light elements in the core. Geophys. Res. Lett. 32, L06313, doi: 10.01029/ 02005GL022773. 184. Takahashi, S., Ohtani, E., Sakai, T., Mashino, I., Kamada, S., Miyahara, M., Sakamaki, T., Hirao, N., Ohishi, Y., 2013. Stability and melting relations of Fe3C up to 3 Mbar: Implication for the carbon in the Earth's inner core, in: Abst. American Geophysical Union Fall Meeting, 2013, MR11B05. 185. Tateno S., Hirose K., Ohishi Y., Tatsumi Y. The structure of iron in Earth's inner core. Science 2010, 330:359-361. 186. Tateno S., Kuwayama Y., Hirose K., Ohishi Y. The structure of Fe-Si alloy in Earth's inner core. Earth Planet. Sci. Lett. 2015, 418:11-19. 187. Terasaki H., Kamada S., Sakai T., Ohtani E., Hirao N., Ohishi Y. Liquidus and solidus temperatures of a Fe-O-alloy up to the pressures of the outer core: Implication for the thermal structure of the Earth's core. Earth Planet. Sci. Lett. 2011, 304:559-564. 188. Terasaki H., Shibazaki Y., Sakamaki T., Tateyama R., Ohtani E., Funakoshi K., Higo Y. Hydrogenation of FeSi under high pressure. Am. Mineral. 2011, 96:93-99. 189. Terasaki H., Ohtani E., Sakai T., Kamada S., Asanuma H., Shibazaki Y., Hirao N., Sata N., Ohishi Y., Sakamaki T. Stability of Fe-Ni hydride after the reaction between Fe-Ni alloy and hydrous phase (5-AlOOH) up to 1.2 Mbar: Possibility of H contribution to the core density deficit. Phys. Earth Planet. Inter. 2012, 194:18-24. 190. Terasaki H., Shibazaki Y., Nishida K., Tateyama R., Takahashi S., Ishii M., Shimoyama Y., Ohtani E., Funakoshi K., Higo Y. Repulsive nature for Hydrogen incorporation to Fe3C up to 14 GPa. ISIJ Int. 2014, 54:2637-2642. 191. Tolstikhin I., Hofmann A.W. Early crust on top of the Earth's core. Phys. Earth Planet. Inter. 2005, 148:109-130. 192. Tsuno K., Ohtani E. Eutectic temperatures and melting relations in the Fe-O-system at high pressures and temperatures. Phys. Chem. Mineral. 2009, 36:9-17. 193. Tsuno K., Frost D.J., Rubie D.C. Simultaneous partitioning of silicon and oxygen into the Earth's core during early Earth differentiation. Geophys. Res. Lett. 2013, 40:66-71. 194. Vočadlo L. Earth's Core: Iron and Iron Alloys. Schubert, G. (Ed.), Treatise on Geophysics (Second Edition). Elsevier, Oxford 2015, 2:117-147. 195. Vočadlo L., Dobson D.P., Wood I.G. Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner-core pressure. Earth Planet. Sci. Lett. 2009, 288:534-538. 196. Wade J., Wood B.J., Tuff J. Metal-silicate partitioning of Mo and W at high pressures and temperatures: Evidence for late accretion of sulphur to the Earth. Geochim. Cosmochim. Acta 2012, 85:58-74. 197. Wang T., Song X., Xia H.H. Equatorial anisotropy in the inner part of Earth's inner core from autocorrelation of earthquake coda. Nat. Geosci. 2015, 8:224-227. 198. Wood B.J., Halliday A.N. The lead isotopic age of the Earth can be explained by core formation alone. Nature 2010, 465:767-770. 199. Wood B.J., Walter M.J., Wade J. Accretion of the Earth and segregation of its core. Nature 2006, 441:825-833. 200. Wood B.J., Wade J., Kilburn M.R. Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta 2008, 72:1415-1426. 201. Wood B.J., Kiseeva E.S., Mirolo F.J. Accretion and core formation: The effects of sulfur on metal-silicate partition coefficients. Geochim. Cosmochim. Acta 2014, 145:248-267. 202. Yin Q., Jacobsen S., Yamashita K., Blichert-Toft J., Telouk P., Albarede F. A short timescale for terrestrial planet formation from Hf-chronometry of meteorites. Nature 2002, 418:949-952. 203. Yoshida S., Sumita I., Kumazawa M. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. J. Geophys. Res.: Solid Earth 1996, 101(28):085-28,103. 204. Zhang W.-J., Liu Z.-Y., Liu Z.-L., Cai L.-C. Melting curves and entropy of melting of iron under Earth's core conditions. Phys. Earth Planet. Inter. 2015, 244:69-77. 205. Zhang Y., Yin Q.-Z. Carbon and other light element contents in the Earth's core based on first-principles molecular dynamics. Proc. Nat. Acad. Sci. 2012, 109:19,579-19,583. 206. Zhu L., Liu H., Pickard C.J., Zou G., Ma Y. Reactions of xenon with iron and nickel are predicted in the Earth's inner core. Nature Chemistry 2014, 6:644-648.