Инд. авторы: Viti L., Coquillat D., Politano A., Kokh K.A., Aliev Z.S., Babanly M.B., Tereshchenko O.E., Knap W., Chulkov E.V., Vitiello M.S.
Заглавие: Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States
Библ. ссылка: Viti L., Coquillat D., Politano A., Kokh K.A., Aliev Z.S., Babanly M.B., Tereshchenko O.E., Knap W., Chulkov E.V., Vitiello M.S. Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States // Nano Letters. - 2016. - Vol.16. - Iss. 1. - P.80-87. - ISSN 1530-6984. - EISSN 1530-6992.
Внешние системы: DOI: 10.1021/acs.nanolett.5b02901; РИНЦ: 26954944; PubMed: 26678677; SCOPUS: 2-s2.0-84957589536; WoS: 000368322700013;
Реферат: eng: Topological insulators (TIs) represent a novel quantum state of matter, characterized by edge or surface-states, showing up on the topological character of the bulk wave functions. Allowing electrons to move along their surface, but not through their inside, they emerged as an intriguing material platform for the exploration of exotic physical phenomena, somehow resembling the graphene Dirac-cone physics, as well as for exciting applications in optoelectronics, spintronics, nanoscience, low-power electronics, and quantum computing. Investigation of topological surface states (TSS) is conventionally hindered by the fact that in most of experimental conditions the TSS properties are mixed up with those of bulk-states. Here, we activate, probe, and exploit the collective electronic excitation of TSS in the Dirac cone. By engineering Bi2Te(3-x)Sex stoichiometry, and by gating the surface of nanoscale field-effect-transistors, exploiting thin flakes of Bi2Te2.2Se0.8 or Bi2Se3, we provide the first demonstration of room-temperature terahertz (THz) detection mediated by overdamped plasma-wave oscillations on the "activated" TSS of a Bi2Te2.2Se0.8 flake. The reported detection performances allow a realistic exploitation of TSS for large-area, fast imaging, promising superb impacts on THz photonics.
Ключевые слова: RADIATION; GENERATION; SEMICONDUCTOR; BI2TE3; QUANTUM; GRAPHENE; FIELD-EFFECT TRANSISTORS; graphene; terahertz; plasma wave; topological insulator; BI2SE3; FILMS;
Издано: 2016
Физ. характеристика: с.80-87
Цитирование: 1. Sizov, F.; Rogalski, A. Prog. Quantum Electron. 2010, 34, 278 10.1016/j.pquantelec.2010.06.002 2. Chen, S.-L.; Chang, Y.-C.; Zhang, C.; Ok, J. G.; Ling, T.; Mihnev, M. T.; Norris, T. B.; Guo, L. J. Nat. Photonics 2014, 8, 537-542 10.1038/nphoton.2014.96 3. Knap, W.; Dyakonov, M. I. In Handbook of terahertz technology for imaging, sensing and communications; Woodhead Publishing: Cambridge, U.K., 2013; 121-155. 4. Vitiello, M. S.; Coquillat, D.; Viti, L.; Ercolani, D.; Teppe, F.; Pitanti, A.; Beltram, F.; Sorba, L.; Knap, W.; Tredicucci, A. Nano Lett. 2012, 12, 96-101 10.1021/nl2030486 5. He, X.; Fujimura, N.; Lloyd, J. M.; Erickson, K. J.; Talin, A. A.; Zhang, Q.; Gao, W.; Jiang, Q.; Kawano, Y.; Hauge, R. H.; Léonard, F.; Kono, J. Nano Lett. 2014, 14, 3953-3958 10.1021/nl5012678 6. Vicarelli, L.; Vitiello, M. S.; Coquillat, D.; Lombardo, A.; Ferrari, A. C.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A. Nat. Mater. 2012, 11, 865 10.1038/nmat3417 7. Spirito, D.; Coquillat, D.; De Bonis, S. L.; Lombardo, A.; Bruna, M.; Ferrari, A. C.; Pellegrini, V.; Tredicucci, A.; Knap, W.; Vitiello, M. S. Appl. Phys. Lett. 2014, 104, 061111 10.1063/1.4864082 8. Zak, A.; Andersson, M. A.; Bauer, M.; Matukas, J.; Lisauskas, A.; Roskos, H. G.; Stake, J. Nano Lett. 2014, 14, 5834-5838 10.1021/nl5027309 9. Koppens, F. H. L.; Mueller, T.; Avouris, Ph.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Nat. Nanotechnol. 2014, 9, 780 10.1038/nnano.2014.215 10. Dyakonov, M.; Shur, M. IEEE Trans. Electron Devices 1996, 43, 380-387 10.1109/16.485650 11. Knap, W.; Rumyantsev, S.; Vitiello, M. S.; Coquillat, D.; Blin, S.; Dyakonova, N.; Shur, M.; Teppe, F.; Tredicucci, A.; Nagatsuma, T. Nanotechnology 2013, 24, 214002 10.1088/0957-4484/24/21/214002 12. Romeo, L.; Coquillat, D.; Husanu, E.; Ercolani, D.; Tredicucci, A.; Beltram, F.; Sorba, L.; Knap, W.; Vitiello, M. S. Appl. Phys. Lett. 2014, 105, 231112 10.1063/1.4903473 13. Yoshimi, R.; Tsukazaki, A.; Kikutake, K.; Checkelsky, J. G.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y. Nat. Mater. 2014, 13, 253-257 10.1038/nmat3885 14. Mellnik, A. R.; Lee, J. S.; Richardella, A.; Grab, J. L.; Mintun, P. J.; Fischer, M. H.; Vaezi, A.; Manchon, A.; Kim, E.-A.; Samarth, N.; Ralph, D. C. Nature 2014, 511, 449-451 10.1038/nature13534 15. McIver, J. W.; Hsieh, D.; Steinberg, H.; Jarillo-Herrero, P.; Gedik, N. Nat. Nanotechnol. 2011, 7, 96-100 10.1038/nnano.2011.214 16. Chen, Y. L.; Analytis, J. G.; Chu, J.-H.; Liu, Z. K.; Mo, S.-K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z.; Zhang, S. C.; Fisher, I. R.; Hussain, Z.; Shen, Z.-X. Science 2009, 325, 178-181 10.1126/science.1173034 17. Peng, H.; Dang, W.; Cao, J.; Chen, Y.; Wu, D.; Zheng, W.; Li, H.; Shen, Z.-X.; Liu, Z. Nat. Chem. 2012, 4, 281-286 10.1038/nchem.1277 18. Zhu, H.; Richter, C. A.; Zhao, E.; Bonevich, J. E.; Kimes, W. A.; Jang, H.-J.; Yuan, H.; Li, H.; Arab, A.; Kirillov, O.; Maslar, J. E.; Ioannou, D. E.; Li, Q. Sci. Rep. 2013, 3, 1757 10.1038/srep01757 19. Nayak, C.; Simon, S. H.; Stern, A.; Freedman, M.; Sarma, S. D. Rev. Mod. Phys. 2008, 80, 1083-1159 10.1103/RevModPhys.80.1083 20. Shikin, A. M.; Klimovskikh, I. I.; Eremeev, S. V.; Rybkina, A. A.; Rusinova, M. V.; Rybkin, A. G.; Zhizhin, E. V.; Sánchez-Barriga, J.; Varykhalov, A.; Rusinov, I. P.; Chulkov, E. V.; Kokh, K. A.; Golyashov, V. A.; Kamyshlov, V.; Tereshchenko, O. E. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 125416 10.1103/PhysRevB.89.125416 21. Zhang, H.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Nat. Phys. 2009, 5, 438 10.1038/nphys1270 22. Fu, L.; Kane, C. L.; Mele, E. J. Phys. Rev. Lett. 2007, 98, 106803 10.1103/PhysRevLett.98.106803 23. Di Pietro, P.; Ortolani, M.; Limaj, O.; Di Gaspare, A.; Giliberti, V.; Giorgianni, F.; Brahlek, M.; Bansal, N.; Koirala, N.; Oh, S.; Calvani, P.; Lupi, S. Nat. Nanotechnol. 2013, 8, 556-560 10.1038/nnano.2013.134 24. Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y.; Shen, S.-Q.; Niu, Q.; Qi, X.-L.; Zhang, S.-C.; Ma, X.-C.; Xue, Q.-K. Nat. Phys. 2010, 6, 584 10.1038/nphys1689 25. Qu, D.-X.; Hor, Y. S.; Xiong, J.; Cava, R. J.; Ong, N. P. Science 2010, 329, 821 10.1126/science.1189792 26. Golyashov, V. A.; Kokh, K. A.; Makarenko, K. V.; Romanyuk, K. N.; Prosvirin, I. P.; Kalinkin, A. V.; Tereshchenko, O. E.; Kozhukhov, A. S.; Sheglov, D. V.; Eremeev, S. V.; Borisova, S. D.; Chulkov, E. V. J. Appl. Phys. 2012, 112, 113702 10.1063/1.4767458 27. Park, B. C.; Kim, T. H.; Sim, K. I.; Kang, B.; Kim, J. W.; Cho, B.; Jeong, K.-H.; Cho, M.-H.; Kim, J. H. Nat. Commun. 2015, 6, 6552 10.1038/ncomms7552 28. Sim, S.; Brahlek, M.; Koirala, N.; Cha, S.; Oh, S.; Choi, H. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 165137 10.1103/PhysRevB.89.165137 29. Luo, C. W.; Chen, H. J.; Tu, C. M.; Lee, C. C.; Ku, S. A.; Tzeng, W. Y.; Yeh, T. T.; Chiang, M. C.; Wang, H. Y.; Chu, W. C.; et al. Adv. Opt. Mater. 2013, 1, 804 10.1002/adom.201300221 30. Zhu, L. G.; Kubera, B.; Mak, K. F.; Shan, J. Sci. Rep. 2015, 5, 10308 10.1038/srep10308 31. Atuchin, V. V.; Golyashov, V. A.; Kokh, K. A.; Korolkov, I. V.; Kozhukhov, A. S.; Kruchinin, V. N.; Makarenko, S. V.; Pokrovsky, L. D.; Prosvirin, I. P.; Romanyuk, K. N.; Tereshchenko, O. E. Cryst. Growth Des. 2011, 11, 5507-5514 10.1021/cg201163v 32. Wei, P.; Wang, Z.; Liu, X.; Aji, V.; Shi, J. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 201402 10.1103/PhysRevB.85.201402 33. Chen, J.; Qin, H. J.; Yang, F.; Liu, J.; Guan, T.; Qu, F. M.; Zhang, G. H.; Shi, J. R.; Xie, X. C.; Yang, C. L.; Wu, K. H.; Li, Y. Q.; Lu, L. Phys. Rev. Lett. 2010, 105, 176602 10.1103/PhysRevLett.105.176602 34. Kim, D.; Syers, P.; Butch, N. P.; Paglione, J.; Fuhrer, M. S. Nano Lett. 2014, 14, 1701-1706 10.1021/nl4032154 35. Shekhar, C.; ViolBarbosa, C. E.; Yan, B.; Ouardi, S.; Schnelle, W.; Fecher, G. H.; Felser, C. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 165140 10.1103/PhysRevB.90.165140 36. Goldsmid, H. J. Materials 2014, 7, 2577-2592 10.3390/ma7042577 37. Yan, Y.; Liao, Z.-M.; Ke, X.; Van Tendeloo, G.; Wang, Q.; Sun, D.; Yao, W.; Zhou, S.; Zhang, L.; Wu, H.-C.; Yu, D.-P. Nano Lett. 2014, 14, 4389-4394 10.1021/nl501276e 38. Le, P. H.; Liao, C.-N.; Luo, C. W.; Lin, J.-Y.; Leu, J. Appl. Surf. Sci. 2013, 285, 657-663 10.1016/j.apsusc.2013.08.107