Инд. авторы: Zakharov Y., Zimin A., Ragulin V.
Заглавие: Two-component incompressible fluid model for simulating surface wave propagation
Библ. ссылка: Zakharov Y., Zimin A., Ragulin V. Two-component incompressible fluid model for simulating surface wave propagation // Communications in Computer and Information Science. - 2015. - Vol.549. - P.201-210. - ISSN 1865-0929. - EISSN 1865-0937.
Внешние системы: DOI: 10.1007/978-3-319-25058-8_20; РИНЦ: 26815003; SCOPUS: 2-s2.0-84951954647;
Реферат: eng: In this paper, the motion model of the two-component incompressible viscous fluid with variable viscosity and density is considered for modeling the process of the surface wave propagation. The model consists of the non-stationary Navier-Stokes equations with variable viscosity and density, the convection-diffusion equation and equations for determining the viscosity and density depending on the concentration of the components. Thus we model the two-component medium, one of the components being more dense and viscous liquid. The results of calculations for two-dimensional and three-dimensional problems are presented. © Springer International Publishing Switzerland 2015.
Ключевые слова: Navier Stokes equations; Variable viscosity; Variable density; Two-component; Three-dimensional problems; Inhomogeneous fluids; Incompressible viscous fluids; Incompressible fluid; Convection-diffusion equations; Wave propagation; Viscosity; Surface waves; Fluids; Diffusion in liquids; Variable viscosity; Variable density; Two-component fluid; Surface wave propagation; Navier-Stokes equations; Inhomogeneous fluid; Viscous flow;
Издано: 2015
Физ. характеристика: с.201-210
Цитирование: 1. Butler, T.D.: LINC method extensions. Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics Lecture Notes in Physics 8, 435-440 (1971) 2. Hirt, C.W.: An arbitrary lagrangian-eulerian computing method for all speeds. Journal of Computational Physics 14, 227-253 (1974) 3. Gingold, R.A., Monaghan, J.J.: Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Monthly Notices of the Royal Astronomical Society 181, 375-389 (1977) 4. Lucy, L.B.: A Numerical Approach to the Testing of Fusion Process. The Astronomical Journal 82(12), 1013-1024 (1977) 5. Vila, J.P.: On Particle Weighted Methods and Smooth Particle Hydrodynamics. Mathematical Models and Methods in Applied Sciences 9(2), 161-209 (1999) 6. Potapov, A.P., Rojz, S.I., Petrov, I.B.: Modelirovanie volnovyh processov metodom sglazhennyh chastic (SPH) [Modeling of wave processes by smoothed particle hydrodynamics (SPH)]. Matematicheskoe Modelirovanie 21(7), 20-28 (2009) 7. Afanas'ev, K.E., Makarchuk, R.S.: Calculation of hydrodynamic loads at solid boundaries of the computation domain by the ISPH method in problems with free boundaries. Russian Journal of Numerical Analysis and Mathematical Modelling 26(5), 447-464 (2011) 8. Harlow, F.H., Welch, J.E.: Numerical Calculation of Time-dependent Viscous Incompressible Flow of Fluid with Free Surface. Phys. Fluids (American Institute of Physics) 8(12), 2182-2189 (1965) 9. McKee, S., Tome, M.F., Ferreira, V.G., Cuminato, J.A., Castelo, A., Sousa, F.S., Mangiavacchi, N.: The MAC method. Computers & Fluids 37, 907-930 (2008) 10. Hirt, C.W.: Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, 201-226 (1981) 11. Khrabryi, A.I., Zaitsev, D.K., Smirnov, E.M.: Chislennoe modelirovanie techenii so svobodnoi poverkhnost'yu na osnove metoda VOF [Numerical simulation of flows with free surface based on VOF method]. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra 78(362), 53-64 (2013) 12. Yakovenko, S.N., Chan, K.S.: Approksimatsiya potoka ob"emnoi fraktsii v techenii dvukh zhidkostei [Approximation of volume fraction stream in flow of two liquids]. Teplofizika i aeromekhanika 15(2), 181-199 (2008) 13. Osher, S.: Front propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12-49 (1988) 14. Tonkov, L.E.: Chislennoe modelirovanie dinamiki kapli vyazkoi zhidkosti metodom funktsii urovnya [Numerical simulation of the dynamics of viscous liqued drop by level set method]. Vestnik Udmurtskogo Universiteta 3, 134-140 (2010) 15. Nikitin, K.: Realistichnoe modelirovanie svobodnoi vodnoi poverkhnosti na adaptivnykh setkakh tipa vos'merichnoe derevo [Realistic simulation of the water surface on adaptive grids of octal tree type]. Nauchno-Tekhnicheskii Vestnik SPbGU ITMO 70(6), 60-64 (2010) 16. Sussman, M., Puckett, E.G.: A Coupled Level Set and Volume of Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows. Journal of Computational Physics 162, 301-337 (2000) 17. Gummel, E.E., Milosevic, H., Ragulin, V.V., Zakharov, YN, Zimin, A.I.: Motion of viscous inhomogeneous incompressible fluid of variable viscosity. Zbornik radova konferencije MIT 2013, 267-274 (2014) 18. Zakharov, Y., Zimin, A., Nudner, I., Ragulin, V.: Two-Component Incompressible Fluid Model for Simulating the Cohesive Soil Erosion. Applied Mechanics and Materials 725-726, 361-368 (2015) 19. Zakharov, Y.N., Ivanov, K.S.: Ob ispolzovanii gradiyentnykh iteratsionnykh metodov pri reshenii nachalno-krayevykh zadach dlya trekhmernoy sistemy uravneniy Navye-Stoksa [Gradient iterative methods for solving initial boundary value problems for three-dimensional Navier-Stokes equations]. Vychislitelnyye tekhnologii 16(2), 55-69 (2011) 20. Balaganckii, M.Y., Zakharov, Y.N., Shokin, Y.I.: Comparison of two- and threedimensional steady flows of a homogeneous viscous incompressible fluid. Russian Journal of Numerical Analysis and Mathematical Modelling 24(1), 1-14 (2009) 21. Milosevic, H., Gaydarov, N.A., Zakharov, Y.N.: Model of incompressible viscous fluid flow driven by pressure difference in a given channel. International Journal of Heat and Mass Transfer 62, 242-246 (2013) 22. Geidarov, N.A., Zakharov, Y.N., Shokin, Y.I.: Solution of the problem of viscous fluid flow with a given pressure differential. Russian Journal of Numerical Analysis and Mathematical Modelling 26(1), 39-48 (2011) 23. Janenko, N.N., Shokin, J.I., Zaharov, J.N.: On the nonlinear acceleration of iterative schemes. In: Quatrieme Colloque International sur les Metodes de CalculScientifiqueet Technique, France, p. 20 (1979) 24. Belotserkovskiy, O.M.: Chislennoye modelirovaniye v mekhanike sploshnykh sred [Numerical modeling in continuum mechanics]. Fizmatlit, Moscow (1994) 25. Yanenko, N.N.: Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoy fiziki [Method of fractional steps for solving multidimensional problems of mathematical physics]. Nauka, Novosibirsk (1967) 26. Patankar, S.: NumericaL Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation (1980) 27. van der Vorst, H.A.: Bi-CGStab: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 13, 631-644 (1992)