Инд. авторы: Redyuk A., Stephens M.F.C., Doran N.J.
Заглавие: Suppression of WDM four-wave mixing crosstalk in fibre optic parametric amplifier using Raman-assisted pumping
Библ. ссылка: Redyuk A., Stephens M.F.C., Doran N.J. Suppression of WDM four-wave mixing crosstalk in fibre optic parametric amplifier using Raman-assisted pumping // Optics Express. - 2015. - Vol.23. - Iss. 21. - P.27240-27249. - ISSN 1094-4087.
Внешние системы: DOI: 10.1364/OE.23.027240; РИНЦ: 26955278; PubMed: 26480384; SCOPUS: 2-s2.0-84957608392; WoS: 000366574400035;
Реферат: eng: We perform an extensive numerical analysis of Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPA) in the context of WDM QPSK signal amplification. A detailed comparison of the conventional FOPA and RA-FOPA is reported and the important advantages offered by the Raman pumping are clarified. We assess the impact of pump power ratios, channel count, and highly nonlinear fibre (HNLF) length on crosstalk levels at different amplifier gains. We show that for a fixed 200 m HNLF length, maximum crosstalk can be reduced by up to 7 dB when amplifying 10x58Gb/s QPSK signals at 20 dB net-gain using a Raman pump of 37 dBm and parametric pump of 28.5 dBm in comparison to a standard single-pump FOPA using 33.4 dBm pump power. It is shown that a significant reduction in four-wave mixing crosstalk is also obtained by reducing the highly nonlinear fibre interaction length. The trend is shown to be generally valid for different net-gain conditions and channel grid size. Crosstalk levels are additionally shown to strongly depend on the Raman/parametric pump power ratio, with a reduction in crosstalk seen for increased Raman pump power contribution. (C) 2015 Optical Society of America
Ключевые слова: MODULATION; GAIN BANDWIDTH;
Издано: 2015
Физ. характеристика: с.27240-27249
Цитирование: 1. D. J. Richardson, "Applied physics. Filling the light pipe," Science 330(6002), 327-328 (2010). 2. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightwave Technol. 28(4), 662-701 (2010). 3. M. F. C. Stephens, I. D. Phillips, P. Rosa, P. Harper, and N. J. Doran, "Improved WDM performance of a fibre optical parametric amplifier using Raman-assisted pumping," Opt. Express 23(2), 902-911 (2015). 4. X. Guo, X. Fu, and C. Shu, "Gain-saturated spectral characteristics in a Raman-assisted fiber optical parametric amplifier," Opt. Lett. 39(12), 3658-3661 (2014). 5. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic, 2005). 6. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008). 7. T. Torounidis, P. A. Andrekson, and B. E. Olsson, "Fibre-optical parametric amplifier with 70-dB gain," IEEE Photonics Technol. Lett. 18(10), 1194-1196 (2006). 8. M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, "Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers," IEEE J. Sel. Top. Quantum Electron. 10(5), 1133-1141 (2004). 9. J. M. C. Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, "Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion," Opt. Commun. 249(4-6), 451-472 (2005). 10. A. Szabo, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, "Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs," IEEE Photonics Technol. Lett. 26(15), 1503-1506 (2014). 11. X. Guo, X. Fu, and C. Shu, "Gain saturation in a Raman-assisted fiber optical parametric amplifier," Opt. Lett. 38(21), 4405-4408 (2013).